Cargando…

Contemporary approaches for modifying the mouse genome

The mouse is a premiere experimental organism that has contributed significantly to our understanding of vertebrate biology. Manipulation of the mouse genome via embryonic stem (ES) cell technology makes it possible to engineer an almost limitless repertoire of mutations to model human disease and a...

Descripción completa

Detalles Bibliográficos
Autores principales: Adams, David J., van der Weyden, Louise
Formato: Texto
Lenguaje:English
Publicado: American Physiological Society 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2519963/
https://www.ncbi.nlm.nih.gov/pubmed/18559964
http://dx.doi.org/10.1152/physiolgenomics.90242.2008
Descripción
Sumario:The mouse is a premiere experimental organism that has contributed significantly to our understanding of vertebrate biology. Manipulation of the mouse genome via embryonic stem (ES) cell technology makes it possible to engineer an almost limitless repertoire of mutations to model human disease and assess gene function. In this review we outline recent advances in mouse experimental genetics and provide a “how-to” guide for those people wishing to access this technology. We also discuss new technologies, such as transposon-mediated mutagenesis, and resources of targeting vectors and ES cells, which are likely to dramatically accelerate the pace with which we can assess gene function in vivo, and the progress of forward and reverse genetic screens in mice.