Cargando…
A Random shRNA-Encoding Library for Phenotypic Selection and Hit-Optimization
RNA interference (RNAi) is a mechanism for inhibiting gene expression through the action of small, non-coding RNAs. Most existing RNAi libraries target single genes through canonical pathways. Endogenous microRNAs (miRNAs), however, often target multiple genes and can act through non-canonical pathw...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2525836/ https://www.ncbi.nlm.nih.gov/pubmed/18779859 http://dx.doi.org/10.1371/journal.pone.0003171 |
Sumario: | RNA interference (RNAi) is a mechanism for inhibiting gene expression through the action of small, non-coding RNAs. Most existing RNAi libraries target single genes through canonical pathways. Endogenous microRNAs (miRNAs), however, often target multiple genes and can act through non-canonical pathways, including pathways that activate gene expression. To interrogate all possible functions, we designed, synthesized, and validated the first shRNA-encoding library that is completely random at the nucleotide level. Screening in an IL3-dependent cell line, FL5.12, yielded shRNA-encoding sequences that double cell survival upon IL3 withdrawal. Using random mutagenesis and re-screening under more stringent IL3-starvation conditions, we hit-optimized one of the sequences; a specific nucleotide change and the creation of a mismatch between the two halves of the stem both contributed to the improved potency. Our library allows unbiased selection and optimization of shRNA-encoding sequences that confer phenotypes of interest, and could be used for the development of therapeutics and tools in many fields of biology. |
---|