Cargando…

A Random shRNA-Encoding Library for Phenotypic Selection and Hit-Optimization

RNA interference (RNAi) is a mechanism for inhibiting gene expression through the action of small, non-coding RNAs. Most existing RNAi libraries target single genes through canonical pathways. Endogenous microRNAs (miRNAs), however, often target multiple genes and can act through non-canonical pathw...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yongping, Wang, Yun E., Cotticelli, M. Grazia, Wilson, Robert B.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2525836/
https://www.ncbi.nlm.nih.gov/pubmed/18779859
http://dx.doi.org/10.1371/journal.pone.0003171
Descripción
Sumario:RNA interference (RNAi) is a mechanism for inhibiting gene expression through the action of small, non-coding RNAs. Most existing RNAi libraries target single genes through canonical pathways. Endogenous microRNAs (miRNAs), however, often target multiple genes and can act through non-canonical pathways, including pathways that activate gene expression. To interrogate all possible functions, we designed, synthesized, and validated the first shRNA-encoding library that is completely random at the nucleotide level. Screening in an IL3-dependent cell line, FL5.12, yielded shRNA-encoding sequences that double cell survival upon IL3 withdrawal. Using random mutagenesis and re-screening under more stringent IL3-starvation conditions, we hit-optimized one of the sequences; a specific nucleotide change and the creation of a mismatch between the two halves of the stem both contributed to the improved potency. Our library allows unbiased selection and optimization of shRNA-encoding sequences that confer phenotypes of interest, and could be used for the development of therapeutics and tools in many fields of biology.