Cargando…

Chum-RNA allows preparation of a high-quality cDNA library from a single-cell quantity of mRNA without PCR amplification

Linear RNA amplification using T7 RNA polymerase is useful in genome-wide analysis of gene expression using DNA microarrays, but exponential amplification using polymerase chain reaction (PCR) is still required for cDNA library preparation from single-cell quantities of RNA. We have designed a small...

Descripción completa

Detalles Bibliográficos
Autores principales: Tougan, Takahiro, Okuzaki, Daisuke, Nojima, Hiroshi
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2528176/
https://www.ncbi.nlm.nih.gov/pubmed/18603591
http://dx.doi.org/10.1093/nar/gkn420
Descripción
Sumario:Linear RNA amplification using T7 RNA polymerase is useful in genome-wide analysis of gene expression using DNA microarrays, but exponential amplification using polymerase chain reaction (PCR) is still required for cDNA library preparation from single-cell quantities of RNA. We have designed a small RNA molecule called chum-RNA that has enabled us to prepare a single-cell cDNA library after four rounds of T7-based linear amplification, without using PCR amplification. Chum-RNA drove cDNA synthesis from only 0.49 femtograms of mRNA (730 mRNA molecules) as a substrate, a quantity that corresponds to a minor population of mRNA molecules in a single mammalian cell. Analysis of the independent cDNA clone of this library (6.6 × 10(5) cfu) suggests that 30-fold RNA amplification occurred in each round of the amplification process. The size distribution and representation of mRNAs in the resulting one-cell cDNA library retained its similarity to that of the million-cell cDNA library. The use of chum-RNA might also facilitate reactions involving other DNA/RNA modifying enzymes whose Michaelis constant (K(m)) values are around 1 mM, allowing them to be activated in the presence of only small quantities of substrate.