Cargando…
Predicting Quantitative Genetic Interactions by Means of Sequential Matrix Approximation
Despite the emerging experimental techniques for perturbing multiple genes and measuring their quantitative phenotypic effects, genetic interactions have remained extremely difficult to predict on a large scale. Using a recent high-resolution screen of genetic interactions in yeast as a case study,...
Autores principales: | Järvinen, Aki P., Hiissa, Jukka, Elo, Laura L., Aittokallio, Tero |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2538561/ https://www.ncbi.nlm.nih.gov/pubmed/18818762 http://dx.doi.org/10.1371/journal.pone.0003284 |
Ejemplares similares
-
Quantitative maps of genetic interactions in yeast - Comparative evaluation and integrative analysis
por: Lindén, Rolf O, et al.
Publicado: (2011) -
Genetic variants and their interactions in disease risk prediction – machine learning and network perspectives
por: Okser, Sebastian, et al.
Publicado: (2013) -
Sequentially Estimating the Approximate Conditional Mean Using Extreme Learning Machines
por: Huo, Lijuan, et al.
Publicado: (2020) -
Genome-Wide Scoring of Positive and Negative Epistasis through Decomposition of Quantitative Genetic Interaction Fitness Matrices
por: Eronen, Ville-Pekka, et al.
Publicado: (2010) -
Missing value imputation improves clustering and interpretation of gene expression microarray data
por: Tuikkala, Johannes, et al.
Publicado: (2008)