Cargando…
Computing Power and Sample Size for Case-Control Association Studies with Copy Number Polymorphism: Application of Mixture-Based Likelihood Ratio Test
Recent studies suggest that copy number polymorphisms (CNPs) may play an important role in disease susceptibility and onset. Currently, the detection of CNPs mainly depends on microarray technology. For case-control studies, conventionally, subjects are assigned to a specific CNP category based on t...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2566806/ https://www.ncbi.nlm.nih.gov/pubmed/18941524 http://dx.doi.org/10.1371/journal.pone.0003475 |
_version_ | 1782159959227629568 |
---|---|
author | Kim, Wonkuk Gordon, Derek Sebat, Jonathan Ye, Kenny Q. Finch, Stephen J. |
author_facet | Kim, Wonkuk Gordon, Derek Sebat, Jonathan Ye, Kenny Q. Finch, Stephen J. |
author_sort | Kim, Wonkuk |
collection | PubMed |
description | Recent studies suggest that copy number polymorphisms (CNPs) may play an important role in disease susceptibility and onset. Currently, the detection of CNPs mainly depends on microarray technology. For case-control studies, conventionally, subjects are assigned to a specific CNP category based on the continuous quantitative measure produced by microarray experiments, and cases and controls are then compared using a chi-square test of independence. The purpose of this work is to specify the likelihood ratio test statistic (LRTS) for case-control sampling design based on the underlying continuous quantitative measurement, and to assess its power and relative efficiency (as compared to the chi-square test of independence on CNP counts). The sample size and power formulas of both methods are given. For the latter, the CNPs are classified using the Bayesian classification rule. The LRTS is more powerful than this chi-square test for the alternatives considered, especially alternatives in which the at-risk CNP categories have low frequencies. An example of the application of the LRTS is given for a comparison of CNP distributions in individuals of Caucasian or Taiwanese ethnicity, where the LRTS appears to be more powerful than the chi-square test, possibly due to misclassification of the most common CNP category into a less common category. |
format | Text |
id | pubmed-2566806 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-25668062008-10-22 Computing Power and Sample Size for Case-Control Association Studies with Copy Number Polymorphism: Application of Mixture-Based Likelihood Ratio Test Kim, Wonkuk Gordon, Derek Sebat, Jonathan Ye, Kenny Q. Finch, Stephen J. PLoS One Research Article Recent studies suggest that copy number polymorphisms (CNPs) may play an important role in disease susceptibility and onset. Currently, the detection of CNPs mainly depends on microarray technology. For case-control studies, conventionally, subjects are assigned to a specific CNP category based on the continuous quantitative measure produced by microarray experiments, and cases and controls are then compared using a chi-square test of independence. The purpose of this work is to specify the likelihood ratio test statistic (LRTS) for case-control sampling design based on the underlying continuous quantitative measurement, and to assess its power and relative efficiency (as compared to the chi-square test of independence on CNP counts). The sample size and power formulas of both methods are given. For the latter, the CNPs are classified using the Bayesian classification rule. The LRTS is more powerful than this chi-square test for the alternatives considered, especially alternatives in which the at-risk CNP categories have low frequencies. An example of the application of the LRTS is given for a comparison of CNP distributions in individuals of Caucasian or Taiwanese ethnicity, where the LRTS appears to be more powerful than the chi-square test, possibly due to misclassification of the most common CNP category into a less common category. Public Library of Science 2008-10-22 /pmc/articles/PMC2566806/ /pubmed/18941524 http://dx.doi.org/10.1371/journal.pone.0003475 Text en Kim et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Kim, Wonkuk Gordon, Derek Sebat, Jonathan Ye, Kenny Q. Finch, Stephen J. Computing Power and Sample Size for Case-Control Association Studies with Copy Number Polymorphism: Application of Mixture-Based Likelihood Ratio Test |
title | Computing Power and Sample Size for Case-Control Association Studies with Copy Number Polymorphism: Application of Mixture-Based Likelihood Ratio Test |
title_full | Computing Power and Sample Size for Case-Control Association Studies with Copy Number Polymorphism: Application of Mixture-Based Likelihood Ratio Test |
title_fullStr | Computing Power and Sample Size for Case-Control Association Studies with Copy Number Polymorphism: Application of Mixture-Based Likelihood Ratio Test |
title_full_unstemmed | Computing Power and Sample Size for Case-Control Association Studies with Copy Number Polymorphism: Application of Mixture-Based Likelihood Ratio Test |
title_short | Computing Power and Sample Size for Case-Control Association Studies with Copy Number Polymorphism: Application of Mixture-Based Likelihood Ratio Test |
title_sort | computing power and sample size for case-control association studies with copy number polymorphism: application of mixture-based likelihood ratio test |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2566806/ https://www.ncbi.nlm.nih.gov/pubmed/18941524 http://dx.doi.org/10.1371/journal.pone.0003475 |
work_keys_str_mv | AT kimwonkuk computingpowerandsamplesizeforcasecontrolassociationstudieswithcopynumberpolymorphismapplicationofmixturebasedlikelihoodratiotest AT gordonderek computingpowerandsamplesizeforcasecontrolassociationstudieswithcopynumberpolymorphismapplicationofmixturebasedlikelihoodratiotest AT sebatjonathan computingpowerandsamplesizeforcasecontrolassociationstudieswithcopynumberpolymorphismapplicationofmixturebasedlikelihoodratiotest AT yekennyq computingpowerandsamplesizeforcasecontrolassociationstudieswithcopynumberpolymorphismapplicationofmixturebasedlikelihoodratiotest AT finchstephenj computingpowerandsamplesizeforcasecontrolassociationstudieswithcopynumberpolymorphismapplicationofmixturebasedlikelihoodratiotest |