Cargando…
Co-synthesis of Human δ-Aminolevulinate Dehydratase (ALAD) Mutants with the Wild-type Enzyme in Cell-free System—Critical Importance of Conformation on Enzyme Activity—
Properties of mutant δ-aminolevulinate dehydratase (ALAD) found in patients with ALAD porphyria were studied by enzymological and immunological analyses after the synthesis of enzyme complexes using a cell-free system. Enzyme activities of homozygous G133R, K59N/G133R, V153M, and E89K mutants were 1...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
the Society for Free Radical Research Japan
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581755/ https://www.ncbi.nlm.nih.gov/pubmed/19015748 http://dx.doi.org/10.3164/jcbn.2008035 |
_version_ | 1782160639390646272 |
---|---|
author | Inoue, Rikako Akagi, Reiko |
author_facet | Inoue, Rikako Akagi, Reiko |
author_sort | Inoue, Rikako |
collection | PubMed |
description | Properties of mutant δ-aminolevulinate dehydratase (ALAD) found in patients with ALAD porphyria were studied by enzymological and immunological analyses after the synthesis of enzyme complexes using a cell-free system. Enzyme activities of homozygous G133R, K59N/G133R, V153M, and E89K mutants were 11%, 22%, 67%, and 75% of the wild-type ALAD, respectively, whereas that of K59N, a normal variant, was 112%. Enzyme activities of L273R, C132R and F12L were undetectable. Co-synthesis of F12L, L273R, G133R, K59N/G133R, or C132R mutants with the wild-type at various ratios showed that ALAD activity was proportionally decreased in the amount of the wild-type in the complex. In contrast, co-synthesis of V153M, K59N, and E89K with the wild-type did not influence enzyme activity of the wild-type. Surface charge changes in K59N, E89K, C132R and G133R predicted by mutations were also confirmed by native polyacrylamide gel electrophoresis. A compound E89K and C132R complex showed ALAD activity similar to that was found in erythrocytes of the patient. These findings indicate that cell-free synthesis of ALAD proteins reflects enzymatic activities found in patients, and suggest that, in addition to the direct effect of mutations on the catalytic activity, conformational effects play an important role in determining enzyme activity. |
format | Text |
id | pubmed-2581755 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | the Society for Free Radical Research Japan |
record_format | MEDLINE/PubMed |
spelling | pubmed-25817552008-11-17 Co-synthesis of Human δ-Aminolevulinate Dehydratase (ALAD) Mutants with the Wild-type Enzyme in Cell-free System—Critical Importance of Conformation on Enzyme Activity— Inoue, Rikako Akagi, Reiko J Clin Biochem Nutr Original Article Properties of mutant δ-aminolevulinate dehydratase (ALAD) found in patients with ALAD porphyria were studied by enzymological and immunological analyses after the synthesis of enzyme complexes using a cell-free system. Enzyme activities of homozygous G133R, K59N/G133R, V153M, and E89K mutants were 11%, 22%, 67%, and 75% of the wild-type ALAD, respectively, whereas that of K59N, a normal variant, was 112%. Enzyme activities of L273R, C132R and F12L were undetectable. Co-synthesis of F12L, L273R, G133R, K59N/G133R, or C132R mutants with the wild-type at various ratios showed that ALAD activity was proportionally decreased in the amount of the wild-type in the complex. In contrast, co-synthesis of V153M, K59N, and E89K with the wild-type did not influence enzyme activity of the wild-type. Surface charge changes in K59N, E89K, C132R and G133R predicted by mutations were also confirmed by native polyacrylamide gel electrophoresis. A compound E89K and C132R complex showed ALAD activity similar to that was found in erythrocytes of the patient. These findings indicate that cell-free synthesis of ALAD proteins reflects enzymatic activities found in patients, and suggest that, in addition to the direct effect of mutations on the catalytic activity, conformational effects play an important role in determining enzyme activity. the Society for Free Radical Research Japan 2008-11 2008-10-31 /pmc/articles/PMC2581755/ /pubmed/19015748 http://dx.doi.org/10.3164/jcbn.2008035 Text en Copyright © 2008 JCBN This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Inoue, Rikako Akagi, Reiko Co-synthesis of Human δ-Aminolevulinate Dehydratase (ALAD) Mutants with the Wild-type Enzyme in Cell-free System—Critical Importance of Conformation on Enzyme Activity— |
title | Co-synthesis of Human δ-Aminolevulinate Dehydratase (ALAD) Mutants with the Wild-type Enzyme in Cell-free System—Critical Importance of Conformation on Enzyme Activity— |
title_full | Co-synthesis of Human δ-Aminolevulinate Dehydratase (ALAD) Mutants with the Wild-type Enzyme in Cell-free System—Critical Importance of Conformation on Enzyme Activity— |
title_fullStr | Co-synthesis of Human δ-Aminolevulinate Dehydratase (ALAD) Mutants with the Wild-type Enzyme in Cell-free System—Critical Importance of Conformation on Enzyme Activity— |
title_full_unstemmed | Co-synthesis of Human δ-Aminolevulinate Dehydratase (ALAD) Mutants with the Wild-type Enzyme in Cell-free System—Critical Importance of Conformation on Enzyme Activity— |
title_short | Co-synthesis of Human δ-Aminolevulinate Dehydratase (ALAD) Mutants with the Wild-type Enzyme in Cell-free System—Critical Importance of Conformation on Enzyme Activity— |
title_sort | co-synthesis of human δ-aminolevulinate dehydratase (alad) mutants with the wild-type enzyme in cell-free system—critical importance of conformation on enzyme activity— |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581755/ https://www.ncbi.nlm.nih.gov/pubmed/19015748 http://dx.doi.org/10.3164/jcbn.2008035 |
work_keys_str_mv | AT inouerikako cosynthesisofhumandaminolevulinatedehydratasealadmutantswiththewildtypeenzymeincellfreesystemcriticalimportanceofconformationonenzymeactivity AT akagireiko cosynthesisofhumandaminolevulinatedehydratasealadmutantswiththewildtypeenzymeincellfreesystemcriticalimportanceofconformationonenzymeactivity |