Cargando…

Wiskott-Aldrich syndrome protein deficiency in B cells results in impaired peripheral homeostasis

To more precisely identify the B-cell phenotype in Wiskott-Aldrich syndrome (WAS), we used 3 distinct murine in vivo models to define the cell intrinsic requirements for WAS protein (WASp) in central versus peripheral B-cell development. Whereas WASp is dispensable for early bone marrow B-cell devel...

Descripción completa

Detalles Bibliográficos
Autores principales: Meyer-Bahlburg, Almut, Becker-Herman, Shirly, Humblet-Baron, Stephanie, Khim, Socheath, Weber, Michele, Bouma, Gerben, Thrasher, Adrian J., Batista, Facundo D., Rawlings, David J.
Formato: Texto
Lenguaje:English
Publicado: American Society of Hematology 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2582000/
https://www.ncbi.nlm.nih.gov/pubmed/18687984
http://dx.doi.org/10.1182/blood-2008-02-140814
Descripción
Sumario:To more precisely identify the B-cell phenotype in Wiskott-Aldrich syndrome (WAS), we used 3 distinct murine in vivo models to define the cell intrinsic requirements for WAS protein (WASp) in central versus peripheral B-cell development. Whereas WASp is dispensable for early bone marrow B-cell development, WASp deficiency results in a marked reduction in each of the major mature peripheral B-cell subsets, exerting the greatest impact on marginal zone and B1a B cells. Using in vivo bromodeoxyuridine labeling and in vitro functional assays, we show that these deficits reflect altered peripheral homeostasis, partially resulting from an impairment in integrin function, rather than a developmental defect. Consistent with these observations, we also show that: (1) WASp expression levels increase with cell maturity, peaking in those subsets exhibiting the greatest sensitivity to WASp deficiency; (2) WASp(+) murine B cells exhibit a marked selective advantage beginning at the late transitional B-cell stage; and (3) a similar in vivo selective advantage is manifest by mature WASp(+) human B cells. Together, our data provide a better understanding of the clinical phenotype of WAS and suggest that gene therapy might be a useful approach to rescue altered B-cell homeostasis in this disease.