Cargando…

Alternative Isoform Regulation in Human Tissue Transcriptomes

Through alternative processing of pre-mRNAs, individual mammalian genes often produce multiple mRNA and protein isoforms that may have related, distinct or even opposing functions. Here we report an in-depth analysis of 15 diverse human tissue and cell line transcriptomes based on deep sequencing of...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Eric T., Sandberg, Rickard, Luo, Shujun, Khrebtukova, Irina, Zhang, Lu, Mayr, Christine, Kingsmore, Stephen F., Schroth, Gary P., Burge, Christopher B.
Formato: Texto
Lenguaje:English
Publicado: 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2593745/
https://www.ncbi.nlm.nih.gov/pubmed/18978772
http://dx.doi.org/10.1038/nature07509
Descripción
Sumario:Through alternative processing of pre-mRNAs, individual mammalian genes often produce multiple mRNA and protein isoforms that may have related, distinct or even opposing functions. Here we report an in-depth analysis of 15 diverse human tissue and cell line transcriptomes based on deep sequencing of cDNA fragments, yielding a digital inventory of gene and mRNA isoform expression. Analysis of mappings of sequence reads to exon-exon junctions indicated that 92-94% of human genes undergo alternative splicing (AS), ∼86% with a minor isoform frequency of 15% or more. Differences in isoform-specific read densities indicated that a majority of AS and of alternative cleavage and polyadenylation (APA) events vary between tissues, while variation between individuals was ∼2- to 3-fold less common. Extreme or ‘switch-like’ regulation of splicing between tissues was associated with increased sequence conservation in regulatory regions and with generation of full-length open reading frames. Patterns of AS and APA were strongly correlated across tissues, suggesting coordinated regulation of these processes, and sequence conservation of a subset of known regulatory motifs in both alternative introns and 3′ UTRs suggested common involvement of specific factors in tissue-level regulation of both splicing and polyadenylation.