Cargando…

Proteolytic fragments of laminin promote excitotoxic neurodegeneration by up-regulation of the KA1 subunit of the kainate receptor

Degradation of the extracellular matrix (ECM) protein laminin contributes to excitotoxic cell death in the hippocampus, but the mechanism of this effect is unknown. To study this process, we disrupted laminin γ1 (lamγ1) expression in the hippocampus. Lamγ1 knockout (KO) and control mice had similar...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Zu-Lin, Yu, Huaxu, Yu, Wei-Ming, Pawlak, Robert, Strickland, Sidney
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2606967/
https://www.ncbi.nlm.nih.gov/pubmed/19114596
http://dx.doi.org/10.1083/jcb.200803107
Descripción
Sumario:Degradation of the extracellular matrix (ECM) protein laminin contributes to excitotoxic cell death in the hippocampus, but the mechanism of this effect is unknown. To study this process, we disrupted laminin γ1 (lamγ1) expression in the hippocampus. Lamγ1 knockout (KO) and control mice had similar basal expression of kainate (KA) receptors, but the lamγ1 KO mice were resistant to KA-induced neuronal death. After KA injection, KA1 subunit levels increased in control mice but were unchanged in lamγ1 KO mice. KA1 levels in tissue plasminogen activator (tPA)–KO mice were also unchanged after KA, indicating that both tPA and laminin were necessary for KA1 up-regulation after KA injection. Infusion of plasmin-digested laminin-1 into the hippocampus of lamγ1 or tPA KO mice restored KA1 up-regulation and KA-induced neuronal degeneration. Interfering with KA1 function with a specific anti-KA1 antibody protected against KA-induced neuronal death both in vitro and in vivo. These results demonstrate a novel pathway for neurodegeneration involving proteolysis of the ECM and KA1 KA receptor subunit up-regulation.