Cargando…
Conformational Changes and Slow Dynamics through Microsecond Polarized Atomistic Molecular Simulation of an Integral Kv1.2 Ion Channel
Structure and dynamics of voltage-gated ion channels, in particular the motion of the S4 helix, is a highly interesting and hotly debated topic in current membrane protein research. It has critical implications for insertion and stabilization of membrane proteins as well as for finding how transitio...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2632863/ https://www.ncbi.nlm.nih.gov/pubmed/19229308 http://dx.doi.org/10.1371/journal.pcbi.1000289 |
_version_ | 1782164047943172096 |
---|---|
author | Bjelkmar, Pär Niemelä, Perttu S. Vattulainen, Ilpo Lindahl, Erik |
author_facet | Bjelkmar, Pär Niemelä, Perttu S. Vattulainen, Ilpo Lindahl, Erik |
author_sort | Bjelkmar, Pär |
collection | PubMed |
description | Structure and dynamics of voltage-gated ion channels, in particular the motion of the S4 helix, is a highly interesting and hotly debated topic in current membrane protein research. It has critical implications for insertion and stabilization of membrane proteins as well as for finding how transitions occur in membrane proteins—not to mention numerous applications in drug design. Here, we present a full 1 µs atomic-detail molecular dynamics simulation of an integral Kv1.2 ion channel, comprising 120,000 atoms. By applying 0.052 V/nm of hyperpolarization, we observe structural rearrangements, including up to 120° rotation of the S4 segment, changes in hydrogen-bonding patterns, but only low amounts of translation. A smaller rotation (∼35°) of the extracellular end of all S4 segments is present also in a reference 0.5 µs simulation without applied field, which indicates that the crystal structure might be slightly different from the natural state of the voltage sensor. The conformation change upon hyperpolarization is closely coupled to an increase in 3(10) helix contents in S4, starting from the intracellular side. This could support a model for transition from the crystal structure where the hyperpolarization destabilizes S4–lipid hydrogen bonds, which leads to the helix rotating to keep the arginine side chains away from the hydrophobic phase, and the driving force for final relaxation by downward translation is partly entropic, which would explain the slow process. The coordinates of the transmembrane part of the simulated channel actually stay closer to the recently determined higher-resolution Kv1.2 chimera channel than the starting structure for the entire second half of the simulation (0.5–1 µs). Together with lipids binding in matching positions and significant thinning of the membrane also observed in experiments, this provides additional support for the predictive power of microsecond-scale membrane protein simulations. |
format | Text |
id | pubmed-2632863 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-26328632009-02-20 Conformational Changes and Slow Dynamics through Microsecond Polarized Atomistic Molecular Simulation of an Integral Kv1.2 Ion Channel Bjelkmar, Pär Niemelä, Perttu S. Vattulainen, Ilpo Lindahl, Erik PLoS Comput Biol Research Article Structure and dynamics of voltage-gated ion channels, in particular the motion of the S4 helix, is a highly interesting and hotly debated topic in current membrane protein research. It has critical implications for insertion and stabilization of membrane proteins as well as for finding how transitions occur in membrane proteins—not to mention numerous applications in drug design. Here, we present a full 1 µs atomic-detail molecular dynamics simulation of an integral Kv1.2 ion channel, comprising 120,000 atoms. By applying 0.052 V/nm of hyperpolarization, we observe structural rearrangements, including up to 120° rotation of the S4 segment, changes in hydrogen-bonding patterns, but only low amounts of translation. A smaller rotation (∼35°) of the extracellular end of all S4 segments is present also in a reference 0.5 µs simulation without applied field, which indicates that the crystal structure might be slightly different from the natural state of the voltage sensor. The conformation change upon hyperpolarization is closely coupled to an increase in 3(10) helix contents in S4, starting from the intracellular side. This could support a model for transition from the crystal structure where the hyperpolarization destabilizes S4–lipid hydrogen bonds, which leads to the helix rotating to keep the arginine side chains away from the hydrophobic phase, and the driving force for final relaxation by downward translation is partly entropic, which would explain the slow process. The coordinates of the transmembrane part of the simulated channel actually stay closer to the recently determined higher-resolution Kv1.2 chimera channel than the starting structure for the entire second half of the simulation (0.5–1 µs). Together with lipids binding in matching positions and significant thinning of the membrane also observed in experiments, this provides additional support for the predictive power of microsecond-scale membrane protein simulations. Public Library of Science 2009-02-20 /pmc/articles/PMC2632863/ /pubmed/19229308 http://dx.doi.org/10.1371/journal.pcbi.1000289 Text en Bjelkmar et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Bjelkmar, Pär Niemelä, Perttu S. Vattulainen, Ilpo Lindahl, Erik Conformational Changes and Slow Dynamics through Microsecond Polarized Atomistic Molecular Simulation of an Integral Kv1.2 Ion Channel |
title | Conformational Changes and Slow Dynamics through Microsecond
Polarized Atomistic Molecular Simulation of an Integral Kv1.2 Ion Channel |
title_full | Conformational Changes and Slow Dynamics through Microsecond
Polarized Atomistic Molecular Simulation of an Integral Kv1.2 Ion Channel |
title_fullStr | Conformational Changes and Slow Dynamics through Microsecond
Polarized Atomistic Molecular Simulation of an Integral Kv1.2 Ion Channel |
title_full_unstemmed | Conformational Changes and Slow Dynamics through Microsecond
Polarized Atomistic Molecular Simulation of an Integral Kv1.2 Ion Channel |
title_short | Conformational Changes and Slow Dynamics through Microsecond
Polarized Atomistic Molecular Simulation of an Integral Kv1.2 Ion Channel |
title_sort | conformational changes and slow dynamics through microsecond
polarized atomistic molecular simulation of an integral kv1.2 ion channel |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2632863/ https://www.ncbi.nlm.nih.gov/pubmed/19229308 http://dx.doi.org/10.1371/journal.pcbi.1000289 |
work_keys_str_mv | AT bjelkmarpar conformationalchangesandslowdynamicsthroughmicrosecondpolarizedatomisticmolecularsimulationofanintegralkv12ionchannel AT niemelaperttus conformationalchangesandslowdynamicsthroughmicrosecondpolarizedatomisticmolecularsimulationofanintegralkv12ionchannel AT vattulainenilpo conformationalchangesandslowdynamicsthroughmicrosecondpolarizedatomisticmolecularsimulationofanintegralkv12ionchannel AT lindahlerik conformationalchangesandslowdynamicsthroughmicrosecondpolarizedatomisticmolecularsimulationofanintegralkv12ionchannel |