Cargando…
Cisplatin and Oxaliplatin Toxicity: Importance of Cochlear Kinetics as a Determinant for Ototoxicity
BACKGROUND: Cisplatin is a cornerstone anticancer drug with pronounced ototoxicity, whereas oxaliplatin, a platinum derivative with a different clinical profile, is rarely ototoxic. This difference has not been explained. METHODS: In HCT116 cells, cisplatin (20 μM)-induced apoptosis was reduced by a...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2639295/ https://www.ncbi.nlm.nih.gov/pubmed/19116379 http://dx.doi.org/10.1093/jnci/djn418 |
Sumario: | BACKGROUND: Cisplatin is a cornerstone anticancer drug with pronounced ototoxicity, whereas oxaliplatin, a platinum derivative with a different clinical profile, is rarely ototoxic. This difference has not been explained. METHODS: In HCT116 cells, cisplatin (20 μM)-induced apoptosis was reduced by a calcium chelator from 9.9-fold induction (95% confidence interval [CI] = 8.1- to 11.7-fold), to 3.1-fold induction (95% CI = 2.0- to 4.2-fold) and by superoxide scavenging from 9.3-fold (95% CI = 8.8- to 9.8-fold), to 5.1-fold (95% CI = 4.4- to 5.8-fold). A guinea pig model (n = 23) was used to examine pharmacokinetics. Drug concentrations were determined by liquid chromatography with post-column derivatization. The total platinum concentration in cochlear tissue was determined by inductively coupled plasma mass spectrometry. Drug pharmacokinetics was assessed by determining the area under the concentration–time curve (AUC). Statistical tests were two-sided. RESULTS: In HCT116 cells, cisplatin (20 μM)-induced apoptosis was reduced by a calcium chelator from 9.9-fold induction (95% confidence interval [CI] = 8.1- to 11.7-fold to 3.1-fold induction) (95% CI = 2.0- to 4.2-fold) and by superoxide scavenging (from 9.3-fold, 95% CI = 8.8- to 9.8-fold, to 5.1-fold, 95% CI = 4.4- to 5.8-fold). Oxaliplatin (20 μM)-induced apoptosis was unaffected by calcium chelation (from 7.1- to 6.2-fold induction) and by superoxide scavenging (from 5.9- to 5.6-fold induction). In guinea pig cochlea, total platinum concentration (0.12 vs 0.63 μg/kg, respectively, P = .008) and perilymphatic drug concentrations (238 vs 515 μM × minute, respectively, P < .001) were lower after intravenous oxaliplatin treatment (16.6 mg/kg) than after equimolar cisplatin treatment (12.5 mg/kg). However, after a non-ototoxic cisplatin dose (5 mg/kg) or the same oxaliplatin dose (16.6 mg/kg), the AUC for perilymphatic concentrations was similar, indicating that the two drugs have different cochlear pharmacokinetics. CONCLUSION: Cisplatin- but not oxaliplatin-induced apoptosis involved superoxide-related pathways. Lower cochlear uptake of oxaliplatin than cisplatin appears to be a major explanation for its lower ototoxicity. |
---|