Cargando…
Lipoic Acid Synthase (LASY): A Novel Role in Inflammation, Mitochondrial Function, and Insulin Resistance
OBJECTIVE—Lipoic acid synthase (LASY) is the enzyme that is involved in the endogenous synthesis of lipoic acid, a potent mitochondrial antioxidant. The aim of this study was to study the role of LASY in type 2 diabetes. RESEARCH DESIGN AND METHODS—We studied expression of LASY in animal models of t...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646058/ https://www.ncbi.nlm.nih.gov/pubmed/19074983 http://dx.doi.org/10.2337/db08-0473 |
_version_ | 1782164815753510912 |
---|---|
author | Padmalayam, Indira Hasham, Sumera Saxena, Uday Pillarisetti, Sivaram |
author_facet | Padmalayam, Indira Hasham, Sumera Saxena, Uday Pillarisetti, Sivaram |
author_sort | Padmalayam, Indira |
collection | PubMed |
description | OBJECTIVE—Lipoic acid synthase (LASY) is the enzyme that is involved in the endogenous synthesis of lipoic acid, a potent mitochondrial antioxidant. The aim of this study was to study the role of LASY in type 2 diabetes. RESEARCH DESIGN AND METHODS—We studied expression of LASY in animal models of type 2 diabetes. We also looked at regulation of LASY in vitro under conditions that exist in diabetes. Additionally, we looked at effects of LASY knockdown on cellular antioxidant status, inflammation, mitochondrial function, and insulin-stimulated glucose uptake. RESULTS—LASY expression is significantly reduced in tissues from animal models of diabetes and obesity compared with age- and sex-matched controls. In vitro, LASY mRNA levels were decreased by the proinflammatory cytokine tumor necrosis factor (TNF)-α and high glucose. Downregulation of the LASY gene by RNA interference (RNAi) reduced endogenous levels of lipoic acid, and the activities of critical components of the antioxidant defense network, increasing oxidative stress. Treatment with exogenous lipoic acid compensated for some of these defects. RNAi-mediated downregulation of LASY induced a significant loss of mitochondrial membrane potential and decreased insulin-stimulated glucose uptake in skeletal muscle cells. In endothelial cells, downregulation of LASY aggravated the inflammatory response that manifested as an increase in both basal and TNF-α–induced expression of the proinflammatory cytokine, monocyte chemoattractant protein-1 (MCP-1). Overexpression of the LASY gene ameliorated the inflammatory response. CONCLUSIONS—Deficiency of LASY results in an overall disturbance in the antioxidant defense network, leading to increased inflammation, insulin resistance, and mitochondrial dysfunction. |
format | Text |
id | pubmed-2646058 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | American Diabetes Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-26460582010-03-01 Lipoic Acid Synthase (LASY): A Novel Role in Inflammation, Mitochondrial Function, and Insulin Resistance Padmalayam, Indira Hasham, Sumera Saxena, Uday Pillarisetti, Sivaram Diabetes Metabolism OBJECTIVE—Lipoic acid synthase (LASY) is the enzyme that is involved in the endogenous synthesis of lipoic acid, a potent mitochondrial antioxidant. The aim of this study was to study the role of LASY in type 2 diabetes. RESEARCH DESIGN AND METHODS—We studied expression of LASY in animal models of type 2 diabetes. We also looked at regulation of LASY in vitro under conditions that exist in diabetes. Additionally, we looked at effects of LASY knockdown on cellular antioxidant status, inflammation, mitochondrial function, and insulin-stimulated glucose uptake. RESULTS—LASY expression is significantly reduced in tissues from animal models of diabetes and obesity compared with age- and sex-matched controls. In vitro, LASY mRNA levels were decreased by the proinflammatory cytokine tumor necrosis factor (TNF)-α and high glucose. Downregulation of the LASY gene by RNA interference (RNAi) reduced endogenous levels of lipoic acid, and the activities of critical components of the antioxidant defense network, increasing oxidative stress. Treatment with exogenous lipoic acid compensated for some of these defects. RNAi-mediated downregulation of LASY induced a significant loss of mitochondrial membrane potential and decreased insulin-stimulated glucose uptake in skeletal muscle cells. In endothelial cells, downregulation of LASY aggravated the inflammatory response that manifested as an increase in both basal and TNF-α–induced expression of the proinflammatory cytokine, monocyte chemoattractant protein-1 (MCP-1). Overexpression of the LASY gene ameliorated the inflammatory response. CONCLUSIONS—Deficiency of LASY results in an overall disturbance in the antioxidant defense network, leading to increased inflammation, insulin resistance, and mitochondrial dysfunction. American Diabetes Association 2009-03 /pmc/articles/PMC2646058/ /pubmed/19074983 http://dx.doi.org/10.2337/db08-0473 Text en Copyright © 2009, American Diabetes Association Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. |
spellingShingle | Metabolism Padmalayam, Indira Hasham, Sumera Saxena, Uday Pillarisetti, Sivaram Lipoic Acid Synthase (LASY): A Novel Role in Inflammation, Mitochondrial Function, and Insulin Resistance |
title | Lipoic Acid Synthase (LASY): A Novel Role in Inflammation, Mitochondrial Function, and Insulin Resistance |
title_full | Lipoic Acid Synthase (LASY): A Novel Role in Inflammation, Mitochondrial Function, and Insulin Resistance |
title_fullStr | Lipoic Acid Synthase (LASY): A Novel Role in Inflammation, Mitochondrial Function, and Insulin Resistance |
title_full_unstemmed | Lipoic Acid Synthase (LASY): A Novel Role in Inflammation, Mitochondrial Function, and Insulin Resistance |
title_short | Lipoic Acid Synthase (LASY): A Novel Role in Inflammation, Mitochondrial Function, and Insulin Resistance |
title_sort | lipoic acid synthase (lasy): a novel role in inflammation, mitochondrial function, and insulin resistance |
topic | Metabolism |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646058/ https://www.ncbi.nlm.nih.gov/pubmed/19074983 http://dx.doi.org/10.2337/db08-0473 |
work_keys_str_mv | AT padmalayamindira lipoicacidsynthaselasyanovelroleininflammationmitochondrialfunctionandinsulinresistance AT hashamsumera lipoicacidsynthaselasyanovelroleininflammationmitochondrialfunctionandinsulinresistance AT saxenauday lipoicacidsynthaselasyanovelroleininflammationmitochondrialfunctionandinsulinresistance AT pillarisettisivaram lipoicacidsynthaselasyanovelroleininflammationmitochondrialfunctionandinsulinresistance |