Cargando…
Electrostatic Interactions Guide the Active Site Face of a Structure-Specific Ribonuclease to Its RNA Substrate
[Image: see text] Restrictocin, a member of the α-sarcin family of site-specific endoribonucleases, uses electrostatic interactions to bind to the ribosome and to RNA oligonucleotides, including the minimal specific substrate, the sarcin/ricin loop (SRL) of 23S−28S rRNA. Restrictocin binds to the SR...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2008
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646754/ https://www.ncbi.nlm.nih.gov/pubmed/18672906 http://dx.doi.org/10.1021/bi800592g |
Sumario: | [Image: see text] Restrictocin, a member of the α-sarcin family of site-specific endoribonucleases, uses electrostatic interactions to bind to the ribosome and to RNA oligonucleotides, including the minimal specific substrate, the sarcin/ricin loop (SRL) of 23S−28S rRNA. Restrictocin binds to the SRL by forming a ground-state E:S complex that is stabilized predominantly by Coulomb interactions and depends on neither the sequence nor structure of the RNA, suggesting a nonspecific complex. The 22 cationic residues of restrictocin are dispersed throughout this protein surface, complicating a priori identification of a Coulomb interacting surface. Structural studies have identified an enzyme−substrate interface, which is expected to overlap with the electrostatic E:S interface. Here, we identified restrictocin residues that contribute to binding in the E:S complex by determining the salt dependence [∂ log(k(2)/K(1/2))/∂ log[KCl]] of cleavage of the minimal SRL substrate for eight point mutants within the protein designed to disrupt contacts in the crystallographically defined interface. Relative to the wild-type salt dependence of −4.1, a subset of the mutants clustering near the active site shows significant changes in salt dependence, with differences of magnitude being ≥0.4. This same subset was identified using calculated salt dependencies for each mutant derived from solutions to the nonlinear Poisson−Boltzmann equation. Our findings support a mechanism in which specific residues on the active site face of restrictocin (primarily K110, K111, and K113) contribute to formation of the E:S complex, thereby positioning the SRL substrate for site-specific cleavage. The same restrictocin residues are expected to facilitate targeting of the SRL on the surface of the ribosome. |
---|