Cargando…

Using random forest for reliable classification and cost-sensitive learning for medical diagnosis

BACKGROUND: Most machine-learning classifiers output label predictions for new instances without indicating how reliable the predictions are. The applicability of these classifiers is limited in critical domains where incorrect predictions have serious consequences, like medical diagnosis. Further,...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Fan, Wang, Hua-zhen, Mi, Hong, Lin, Cheng-de, Cai, Wei-wen
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2648734/
https://www.ncbi.nlm.nih.gov/pubmed/19208122
http://dx.doi.org/10.1186/1471-2105-10-S1-S22