Cargando…
Using random forest for reliable classification and cost-sensitive learning for medical diagnosis
BACKGROUND: Most machine-learning classifiers output label predictions for new instances without indicating how reliable the predictions are. The applicability of these classifiers is limited in critical domains where incorrect predictions have serious consequences, like medical diagnosis. Further,...
Autores principales: | Yang, Fan, Wang, Hua-zhen, Mi, Hong, Lin, Cheng-de, Cai, Wei-wen |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2648734/ https://www.ncbi.nlm.nih.gov/pubmed/19208122 http://dx.doi.org/10.1186/1471-2105-10-S1-S22 |
Ejemplares similares
-
Causative Classification of Ischemic Stroke by the Machine Learning Algorithm Random Forests
por: Wang, Jianan, et al.
Publicado: (2022) -
Simultaneous regression and classification for drug sensitivity prediction using an advanced random forest method
por: Lenhof, Kerstin, et al.
Publicado: (2022) -
Uncertainty Assessment of Hyperspectral Image Classification: Deep Learning vs. Random Forest
por: Shadman Roodposhti, Majid, et al.
Publicado: (2019) -
The parameter sensitivity of random forests
por: Huang, Barbara F.F., et al.
Publicado: (2016) -
Weighted Random Forests to Improve Arrhythmia Classification
por: Gajowniczek, Krzysztof, et al.
Publicado: (2020)