Cargando…

Diene-modified nucleotides for the Diels–Alder-mediated functional tagging of DNA

We explore the potential of the Diels–Alder cycloaddition for the functional tagging of DNA strands. A deoxyuridine triphosphate derivative carrying a diene at position 5 of the pyrimidine base was synthesized using a two-step procedure. The derivative was efficiently accepted as substrate in enzyma...

Descripción completa

Detalles Bibliográficos
Autores principales: Borsenberger, Vinciane, Howorka, Stefan
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2655660/
https://www.ncbi.nlm.nih.gov/pubmed/19139071
http://dx.doi.org/10.1093/nar/gkn1066
Descripción
Sumario:We explore the potential of the Diels–Alder cycloaddition for the functional tagging of DNA strands. A deoxyuridine triphosphate derivative carrying a diene at position 5 of the pyrimidine base was synthesized using a two-step procedure. The derivative was efficiently accepted as substrate in enzymatic polymerization assays. Diene carrying strands underwent successful cycloaddition with maleimide-terminated fluorescence dyes and a polymeric reagent. Furthermore, a nucleotide carrying a peptide via a Diels–Alder cyclohexene linkage was prepared and sequence-specifically incorporated into DNA. The Diels–Alder reaction presents a number of positive attributes such as good chemoselectivity, water compatibility, high-yield under mild conditions and no additional reagents apart from a diene and a dienophile. Furthermore, suitable dienophiles are commercially available in the form of maleimide-derivatives of fluorescent dyes and bioaffinity tags. Based on these advantages, diene- and cyclohexene-based nucleotide triphosphates are expected to find wider use in the area of nucleic acid chemistry.