Cargando…
Diene-modified nucleotides for the Diels–Alder-mediated functional tagging of DNA
We explore the potential of the Diels–Alder cycloaddition for the functional tagging of DNA strands. A deoxyuridine triphosphate derivative carrying a diene at position 5 of the pyrimidine base was synthesized using a two-step procedure. The derivative was efficiently accepted as substrate in enzyma...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2655660/ https://www.ncbi.nlm.nih.gov/pubmed/19139071 http://dx.doi.org/10.1093/nar/gkn1066 |
Sumario: | We explore the potential of the Diels–Alder cycloaddition for the functional tagging of DNA strands. A deoxyuridine triphosphate derivative carrying a diene at position 5 of the pyrimidine base was synthesized using a two-step procedure. The derivative was efficiently accepted as substrate in enzymatic polymerization assays. Diene carrying strands underwent successful cycloaddition with maleimide-terminated fluorescence dyes and a polymeric reagent. Furthermore, a nucleotide carrying a peptide via a Diels–Alder cyclohexene linkage was prepared and sequence-specifically incorporated into DNA. The Diels–Alder reaction presents a number of positive attributes such as good chemoselectivity, water compatibility, high-yield under mild conditions and no additional reagents apart from a diene and a dienophile. Furthermore, suitable dienophiles are commercially available in the form of maleimide-derivatives of fluorescent dyes and bioaffinity tags. Based on these advantages, diene- and cyclohexene-based nucleotide triphosphates are expected to find wider use in the area of nucleic acid chemistry. |
---|