Cargando…

Influence of flanking sequence context on the conformational flexibility of aminofluorene-modified dG adduct in dA mismatch DNA duplexes

When positioned opposite to a dA in a DNA duplex, the prototype arylamine–DNA adduct [N-(2′-deoxyguanosin-yl)-7-fluoro-2-aminofluorene (FAF)] adopts the so-called ‘wedge’ (W) conformation, in which the carcinogen resides in the minor groove of the duplex. All 16 FAF-modified 12-mer NG*N/NAN dA misma...

Descripción completa

Detalles Bibliográficos
Autores principales: Jain, Nidhi, Meneni, Srinivasarao, Jain, Vipin, Cho, Bongsup P.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2655675/
https://www.ncbi.nlm.nih.gov/pubmed/19151371
http://dx.doi.org/10.1093/nar/gkn1063
Descripción
Sumario:When positioned opposite to a dA in a DNA duplex, the prototype arylamine–DNA adduct [N-(2′-deoxyguanosin-yl)-7-fluoro-2-aminofluorene (FAF)] adopts the so-called ‘wedge’ (W) conformation, in which the carcinogen resides in the minor groove of the duplex. All 16 FAF-modified 12-mer NG*N/NAN dA mismatch duplexes (G* = FAF, N = G, A, C, T) exhibited strongly positive induced circular dichroism in the 290–360 nm range (ICD(290–360 nm)), which supports the W conformation. The ICD(290–360 nm) intensities were the greatest for duplexes with a 3′-flanking T. The AG*N duplex series showed little adduct-induced destabilization. An exception was the AG*T duplex, which displayed two well-resolved signals in the (19)F NMR spectra. This was presumably due to a strong lesion-destabilizing effect of the 3′-T. The flanking T effect was substantiated further by findings with the TG*T duplex, which exhibited greater lesion flexibility and nucleotide excision repair recognition. Adduct conformational heterogeneity decreased in order of TG*T > AG*T > CG*T > AG*A > AG*G > AG*C. The dramatic flanking T effect on W-conformeric duplexes is consistent with the strong dependence of the ICD(290-360) on both temperature and salt concentration and could be extended to the arylamine food mutagens that are biologically relevant in humans.