Cargando…
Pairwise statistical significance of local sequence alignment using multiple parameter sets and empirical justification of parameter set change penalty
BACKGROUND: Accurate estimation of statistical significance of a pairwise alignment is an important problem in sequence comparison. Recently, a comparative study of pairwise statistical significance with database statistical significance was conducted. In this paper, we extend the earlier work on pa...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2665049/ https://www.ncbi.nlm.nih.gov/pubmed/19344477 http://dx.doi.org/10.1186/1471-2105-10-S3-S1 |
_version_ | 1782166015327600640 |
---|---|
author | Agrawal, Ankit Huang, Xiaoqiu |
author_facet | Agrawal, Ankit Huang, Xiaoqiu |
author_sort | Agrawal, Ankit |
collection | PubMed |
description | BACKGROUND: Accurate estimation of statistical significance of a pairwise alignment is an important problem in sequence comparison. Recently, a comparative study of pairwise statistical significance with database statistical significance was conducted. In this paper, we extend the earlier work on pairwise statistical significance by incorporating with it the use of multiple parameter sets. RESULTS: Results for a knowledge discovery application of homology detection reveal that using multiple parameter sets for pairwise statistical significance estimates gives better coverage than using a single parameter set, at least at some error levels. Further, the results of pairwise statistical significance using multiple parameter sets are shown to be significantly better than database statistical significance estimates reported by BLAST and PSI-BLAST, and comparable and at times significantly better than SSEARCH. Using non-zero parameter set change penalty values give better performance than zero penalty. CONCLUSION: The fact that the homology detection performance does not degrade when using multiple parameter sets is a strong evidence for the validity of the assumption that the alignment score distribution follows an extreme value distribution even when using multiple parameter sets. Parameter set change penalty is a useful parameter for alignment using multiple parameter sets. Pairwise statistical significance using multiple parameter sets can be effectively used to determine the relatedness of a (or a few) pair(s) of sequences without performing a time-consuming database search. |
format | Text |
id | pubmed-2665049 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-26650492009-04-06 Pairwise statistical significance of local sequence alignment using multiple parameter sets and empirical justification of parameter set change penalty Agrawal, Ankit Huang, Xiaoqiu BMC Bioinformatics Proceedings BACKGROUND: Accurate estimation of statistical significance of a pairwise alignment is an important problem in sequence comparison. Recently, a comparative study of pairwise statistical significance with database statistical significance was conducted. In this paper, we extend the earlier work on pairwise statistical significance by incorporating with it the use of multiple parameter sets. RESULTS: Results for a knowledge discovery application of homology detection reveal that using multiple parameter sets for pairwise statistical significance estimates gives better coverage than using a single parameter set, at least at some error levels. Further, the results of pairwise statistical significance using multiple parameter sets are shown to be significantly better than database statistical significance estimates reported by BLAST and PSI-BLAST, and comparable and at times significantly better than SSEARCH. Using non-zero parameter set change penalty values give better performance than zero penalty. CONCLUSION: The fact that the homology detection performance does not degrade when using multiple parameter sets is a strong evidence for the validity of the assumption that the alignment score distribution follows an extreme value distribution even when using multiple parameter sets. Parameter set change penalty is a useful parameter for alignment using multiple parameter sets. Pairwise statistical significance using multiple parameter sets can be effectively used to determine the relatedness of a (or a few) pair(s) of sequences without performing a time-consuming database search. BioMed Central 2009-03-19 /pmc/articles/PMC2665049/ /pubmed/19344477 http://dx.doi.org/10.1186/1471-2105-10-S3-S1 Text en Copyright © 2009 Agrawal and Huang; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Proceedings Agrawal, Ankit Huang, Xiaoqiu Pairwise statistical significance of local sequence alignment using multiple parameter sets and empirical justification of parameter set change penalty |
title | Pairwise statistical significance of local sequence alignment using multiple parameter sets and empirical justification of parameter set change penalty |
title_full | Pairwise statistical significance of local sequence alignment using multiple parameter sets and empirical justification of parameter set change penalty |
title_fullStr | Pairwise statistical significance of local sequence alignment using multiple parameter sets and empirical justification of parameter set change penalty |
title_full_unstemmed | Pairwise statistical significance of local sequence alignment using multiple parameter sets and empirical justification of parameter set change penalty |
title_short | Pairwise statistical significance of local sequence alignment using multiple parameter sets and empirical justification of parameter set change penalty |
title_sort | pairwise statistical significance of local sequence alignment using multiple parameter sets and empirical justification of parameter set change penalty |
topic | Proceedings |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2665049/ https://www.ncbi.nlm.nih.gov/pubmed/19344477 http://dx.doi.org/10.1186/1471-2105-10-S3-S1 |
work_keys_str_mv | AT agrawalankit pairwisestatisticalsignificanceoflocalsequencealignmentusingmultipleparametersetsandempiricaljustificationofparametersetchangepenalty AT huangxiaoqiu pairwisestatisticalsignificanceoflocalsequencealignmentusingmultipleparametersetsandempiricaljustificationofparametersetchangepenalty |