Cargando…

U1-independent pre-mRNA splicing contributes to the regulation of alternative splicing

U1 snRNP plays a crucial role in the 5′ splice site recognition during splicing. Here we report the first example of naturally occurring U1-independent U2-type splicing in humans. The U1 components were not included in the pre-spliceosomal E complex formed on the human F1γ (hF1γ) intron 9 in vitro....

Descripción completa

Detalles Bibliográficos
Autores principales: Fukumura, Kazuhiro, Taniguchi, Ichiro, Sakamoto, Hiroshi, Ohno, Mutsuhito, Inoue, Kunio
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2009
Materias:
RNA
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2665233/
https://www.ncbi.nlm.nih.gov/pubmed/19190090
http://dx.doi.org/10.1093/nar/gkp050
Descripción
Sumario:U1 snRNP plays a crucial role in the 5′ splice site recognition during splicing. Here we report the first example of naturally occurring U1-independent U2-type splicing in humans. The U1 components were not included in the pre-spliceosomal E complex formed on the human F1γ (hF1γ) intron 9 in vitro. Moreover, hF1γ intron 9 was efficiently spliced even in U1-disrupted Xenopus oocytes as well as in U1-inactivated HeLa nuclear extracts. Finally, hF1γ exon 9 skipping induced by an alternative splicing regulator Fox-1 was impaired when intron 9 was changed to the U1-dependent one. Our results suggest that U1-independent splicing contributes to the regulation of alternative splicing of a class of pre-mRNAs.