Cargando…
RNA Polymerase V transcription guides ARGONAUTE4 to chromatin
Retrotransposons and repetitive DNA elements in eukaryotes are silenced by small RNA-directed heterochromatin formation. In Arabidopsis, this process involves 24 nt siRNAs that bind to ARGONAUTE4 (AGO4) and facilitate the targeting of complementary loci1,2 via unknown mechanisms. Nuclear RNA Polymer...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2674513/ https://www.ncbi.nlm.nih.gov/pubmed/19377477 http://dx.doi.org/10.1038/ng.365 |
Sumario: | Retrotransposons and repetitive DNA elements in eukaryotes are silenced by small RNA-directed heterochromatin formation. In Arabidopsis, this process involves 24 nt siRNAs that bind to ARGONAUTE4 (AGO4) and facilitate the targeting of complementary loci1,2 via unknown mechanisms. Nuclear RNA Polymerase V is an RNA silencing enzyme recently shown to generate noncoding transcripts at loci silenced by 24nt siRNAs3. We show that AGO4 physically interacts with these Pol V transcripts and is thereby recruited to the corresponding chromatin. We further show that DEFECTIVE IN MERISTEM SILENCING3 (DMS3), a Structural Maintenance of Chromosomes (SMC) hinge-domain protein4, functions in the assembly of Pol V transcription initiation or elongation complexes. Collectively, our data suggest that AGO4 is guided to target loci through base-pairing of associated siRNAs with nascent Pol V transcripts. |
---|