Cargando…

Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon

Induced pluripotent stem cells (iPSCs) have been generated from somatic cells by transgenic expression of Oct4, Sox2, Klf4, and cMyc. A major difficulty in the application of this technology for regenerative medicine, however, is the delivery of reprogramming factors. Whereas retroviral transduction...

Descripción completa

Detalles Bibliográficos
Autores principales: Yusa, Kosuke, Rad, Roland, Takeda, Junji, Bradley, Allan
Formato: Texto
Lenguaje:English
Publicado: 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677165/
https://www.ncbi.nlm.nih.gov/pubmed/19337237
http://dx.doi.org/10.1038/nmeth.1323
Descripción
Sumario:Induced pluripotent stem cells (iPSCs) have been generated from somatic cells by transgenic expression of Oct4, Sox2, Klf4, and cMyc. A major difficulty in the application of this technology for regenerative medicine, however, is the delivery of reprogramming factors. Whereas retroviral transduction increases the risk of tumorigenicity, transient expression methods have considerably lower reprogramming efficiencies. Here we show a highly efficient piggyBac transposon-based approach to generate integration-free iPSCs. Transposons carrying 2A peptide-linked reprogramming factors induced reprogramming of mouse embryonic fibroblasts with equivalent efficiencies to retroviral transduction. Transposons were removed from these primary iPSCs by re-expressing transposase. Transgene-free iPSCs could be easily identified by HSVtk-FIAU selection. piggyBac excises without a footprint, leaving the iPSC genome without any genetic alteration. iPSCs fulfilled all criteria of pluripotency, such as expression of embryonic stem cell-specific markers, teratoma formation and contribution to chimeras. piggyBac transposon-based reprogramming may be used to generate therapeutically applicable iPSCs.