Cargando…
A Novel Biological Activity of Praziquantel Requiring Voltage-Operated Ca(2+) Channel β Subunits: Subversion of Flatworm Regenerative Polarity
BACKGROUND: Approximately 200 million people worldwide harbour parasitic flatworm infections that cause schistosomiasis. A single drug—praziquantel (PZQ)—has served as the mainstay pharmacotherapy for schistosome infections since the 1980s. However, the relevant in vivo target(s) of praziquantel rem...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694594/ https://www.ncbi.nlm.nih.gov/pubmed/19554083 http://dx.doi.org/10.1371/journal.pntd.0000464 |
Sumario: | BACKGROUND: Approximately 200 million people worldwide harbour parasitic flatworm infections that cause schistosomiasis. A single drug—praziquantel (PZQ)—has served as the mainstay pharmacotherapy for schistosome infections since the 1980s. However, the relevant in vivo target(s) of praziquantel remain undefined. METHODS AND FINDINGS: Here, we provide fresh perspective on the molecular basis of praziquantel efficacy in vivo consequent to the discovery of a remarkable action of PZQ on regeneration in a species of free-living flatworm (Dugesia japonica). Specifically, PZQ caused a robust (100% penetrance) and complete duplication of the entire anterior-posterior axis during flatworm regeneration to yield two-headed organisms with duplicated, integrated central nervous and organ systems. Exploiting this phenotype as a readout for proteins impacting praziquantel efficacy, we demonstrate that PZQ-evoked bipolarity was selectively ablated by in vivo RNAi of voltage-operated calcium channel (VOCC) β subunits, but not by knockdown of a VOCC α subunit. At higher doses of PZQ, knockdown of VOCC β subunits also conferred resistance to PZQ in lethality assays. CONCLUSIONS: This study identifies a new biological activity of the antischistosomal drug praziquantel on regenerative polarity in a species of free-living flatworm. Ablation of the bipolar regenerative phenotype evoked by PZQ via in vivo RNAi of VOCC β subunits provides the first genetic evidence implicating a molecular target crucial for in vivo PZQ activity and supports the ‘VOCC hypothesis’ of PZQ efficacy. Further, in terms of regenerative biology and Ca(2+) signaling, these data highlight a novel role for voltage-operated Ca(2+) entry in regulating in vivo stem cell differentiation and regenerative patterning. |
---|