Cargando…
Restricted maximum likelihood estimation of genetic principal components and smoothed covariance matrices
Principal component analysis is a widely used 'dimension reduction' technique, albeit generally at a phenotypic level. It is shown that we can estimate genetic principal components directly through a simple reparameterisation of the usual linear, mixed model. This is applicable to any anal...
Autores principales: | Meyer, Karin, Kirkpatrick, Mark |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2697245/ https://www.ncbi.nlm.nih.gov/pubmed/15588566 http://dx.doi.org/10.1186/1297-9686-37-1-1 |
Ejemplares similares
-
Performance of penalized maximum likelihood in estimation of genetic covariances matrices
por: Meyer, Karin
Publicado: (2011) -
An 'average information' restricted maximum likelihood algorithm for estimating reduced rank genetic covariance matrices or covariance functions for animal models with equal design matrices
por: Meyer, K
Publicado: (1997) -
Reducing computational demands of restricted maximum likelihood estimation with genomic relationship matrices
por: Meyer, Karin
Publicado: (2023) -
Estimating variances and covariances for multivariate animal models by restricted maximum likelihood
por: Meyer, K
Publicado: (1991) -
Restricted maximum likelihood estimation of covariances in sparse linear models
por: Neumaier, Arnold, et al.
Publicado: (1998)