Cargando…

(124)I-L19-SIP for immuno-PET imaging of tumour vasculature and guidance of (131)I-L19-SIP radioimmunotherapy

PURPOSE: The human monoclonal antibody (MAb) fragment L19-SIP is directed against extra domain B (ED-B) of fibronectin, a marker of tumour angiogenesis. A clinical radioimmunotherapy (RIT) trial with (131)I-L19-SIP was recently started. In the present study, after GMP production of (124)I and effici...

Descripción completa

Detalles Bibliográficos
Autores principales: Tijink, Bernard M., Perk, Lars R., Budde, Marianne, Stigter-van Walsum, Marijke, Visser, Gerard W. M., Kloet, Reina W., Dinkelborg, Ludger M., Leemans, C. René, Neri, Dario, van Dongen, Guus A. M. S.
Formato: Texto
Lenguaje:English
Publicado: Springer-Verlag 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709218/
https://www.ncbi.nlm.nih.gov/pubmed/19259661
http://dx.doi.org/10.1007/s00259-009-1096-y
Descripción
Sumario:PURPOSE: The human monoclonal antibody (MAb) fragment L19-SIP is directed against extra domain B (ED-B) of fibronectin, a marker of tumour angiogenesis. A clinical radioimmunotherapy (RIT) trial with (131)I-L19-SIP was recently started. In the present study, after GMP production of (124)I and efficient production of (124)I-L19-SIP, we aimed to demonstrate the suitability of (124)I-L19-SIP immuno-PET for imaging of angiogenesis at early-stage tumour development and as a scouting procedure prior to clinical (131)I-L19-SIP RIT. METHODS: (124)I was produced in a GMP compliant way via (124)Te(p,n)(124)I reaction and using a TERIMO™ module for radioiodine separation. L19-SIP was radioiodinated by using a modified version of the IODO-GEN method. The biodistribution of coinjected (124)I- and (131)I-L19-SIP was compared in FaDu xenograft-bearing nude mice, while (124)I PET images were obtained from mice with tumours of <50 to ∼700 mm(3). RESULTS: (124)I was produced highly pure with an average yield of 15.4 ± 0.5 MBq/μAh, while separation yield was ∼90% efficient with <0.5% loss of TeO(2). Overall labelling efficiency, radiochemical purity and immunoreactive fraction were for (124)I-L19-SIP: ∼80 , 99.9 and >90%, respectively. Tumour uptake was 7.3 ± 2.1, 10.8 ± 1.5, 7.8 ± 1.4, 5.3 ± 0.6 and 3.1 ± 0.4%ID/g at 3, 6, 24, 48 and 72 h p.i., resulting in increased tumour to blood ratios ranging from 6.0 at 24 h to 45.9 at 72 h p.i.. Fully concordant labelling and biodistribution results were obtained with (124)I- and (131)I-L19-SIP. Immuno-PET with (124)I-L19-SIP using a high-resolution research tomograph PET scanner revealed clear delineation of the tumours as small as 50 mm(3) and no adverse uptake in other organs. CONCLUSIONS: (124)I-MAb conjugates for clinical immuno-PET can be efficiently produced. Immuno-PET with (124)I-L19-SIP appeared qualified for sensitive imaging of tumour neovasculature and for predicting (131)I-L19-SIP biodistribution.