Cargando…

Carbonate and carbamate derivatives of 4-demethylpenclomedine as novel anticancer agents

PURPOSE: The purpose of this investigation was to synthesize a series of carbonate and carbamate derivatives of 4-demethylpenclomedine (DM-PEN), the major plasma non-toxic metabolite of penclomedine (PEN) seen in patients. DM-PEN has been observed to be an active antitumor agent in mouse human xenog...

Descripción completa

Detalles Bibliográficos
Autores principales: Morgan, Lee Roy, Struck, Robert F., Waud, William R., LeBlanc, Blaise, Rodgers, Andrew H., Jursic, Branko S.
Formato: Texto
Lenguaje:English
Publicado: Springer-Verlag 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2717391/
https://www.ncbi.nlm.nih.gov/pubmed/19255760
http://dx.doi.org/10.1007/s00280-009-0933-9
Descripción
Sumario:PURPOSE: The purpose of this investigation was to synthesize a series of carbonate and carbamate derivatives of 4-demethylpenclomedine (DM-PEN), the major plasma non-toxic metabolite of penclomedine (PEN) seen in patients. DM-PEN has been observed to be an active antitumor agent in mouse human xenograft tumor models and non-neurotoxic in a rat model, however, activity in intracranially implanted human glioma xenograft models have not been reported. The major goal was to identify derivatives that are active in brain tumors. METHODS: Derivatives were prepared from DM-PEN and evaluated in vivo against human U251 glioblastoma, D54 glioblastoma and MX-1 breast tumor xenografts and mammary tumor 16/C that were implanted in the mammary fat pad or intracranially (IC). RESULTS: Carbonate and carbamate derivatives were found to be superior to DM-PEN against IC growing human glioblastoma xenografts. CONCLUSION: The activity of the carbonates and carbamates against human tumor xenografts in vivo suggests consideration of these two series of derivatives of DM-PEN for clinical development.