Cargando…

Type I collagen inhibits differentiation and promotes a stem cell-like phenotype in human colorectal carcinoma cells

BACKGROUND: Human colorectal cancer is caused by mutations and is thought to be maintained by a population of cancer stem cells. Further phenotypic changes occurring at the invasive edge suggest that colon cancer cells are also regulated by their microenvironment. Type I collagen, a promoter of the...

Descripción completa

Detalles Bibliográficos
Autor principal: Kirkland, S C
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720218/
https://www.ncbi.nlm.nih.gov/pubmed/19568234
http://dx.doi.org/10.1038/sj.bjc.6605143
Descripción
Sumario:BACKGROUND: Human colorectal cancer is caused by mutations and is thought to be maintained by a population of cancer stem cells. Further phenotypic changes occurring at the invasive edge suggest that colon cancer cells are also regulated by their microenvironment. Type I collagen, a promoter of the malignant phenotype in pancreatic carcinoma cells, is highly expressed at the invasive front of human colorectal cancer. METHODS: This study investigates the role of type I collagen in specifying the colorectal cancer cell phenotype. The effect of type I collagen on morphology, localisation of cell–cell adhesion proteins, differentiation and stem cell-like characteristics was examined in a panel of human colorectal carcinoma cell lines. RESULTS: Human colorectal carcinoma cells grown on type I collagen in serum-free medium show an epithelial–mesenchymal-like transition (EMT-like), assuming a more flattened less cohesive morphology. Type I collagen downregulates E-cadherin and β-catenin at cell–cell junctions. Furthermore, type I collagen inhibits differentiation, increases clonogenicity and promotes expression of stem cell markers CD133 and Bmi1. Type I collagen effects were partially abrogated by a function-blocking antibody to α2 integrin. CONCLUSION: Together, these results indicate that type I collagen promotes expression of a stem cell-like phenotype in human colorectal cancer cells likely through α2β1 integrin.