Cargando…
Genome-Wide Screen of Genes Required for Caffeine Tolerance in Fission Yeast
BACKGROUND: An excess of caffeine is cytotoxic to all eukaryotic cell types. We aim to study how cells become tolerant to a toxic dose of this drug, and the relationship between caffeine and oxidative stress pathways. METHODOLOGY/PRINCIPAL FINDINGS: We searched for Schizosaccharomyces pombe mutants...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720375/ https://www.ncbi.nlm.nih.gov/pubmed/19672306 http://dx.doi.org/10.1371/journal.pone.0006619 |
_version_ | 1782170128020930560 |
---|---|
author | Calvo, Isabel A. Gabrielli, Natalia Iglesias-Baena, Iván García-Santamarina, Sarela Hoe, Kwang-Lae Kim, Dong Uk Sansó, Miriam Zuin, Alice Pérez, Pilar Ayté, José Hidalgo, Elena |
author_facet | Calvo, Isabel A. Gabrielli, Natalia Iglesias-Baena, Iván García-Santamarina, Sarela Hoe, Kwang-Lae Kim, Dong Uk Sansó, Miriam Zuin, Alice Pérez, Pilar Ayté, José Hidalgo, Elena |
author_sort | Calvo, Isabel A. |
collection | PubMed |
description | BACKGROUND: An excess of caffeine is cytotoxic to all eukaryotic cell types. We aim to study how cells become tolerant to a toxic dose of this drug, and the relationship between caffeine and oxidative stress pathways. METHODOLOGY/PRINCIPAL FINDINGS: We searched for Schizosaccharomyces pombe mutants with inhibited growth on caffeine-containing plates. We screened a collection of 2,700 haploid mutant cells, of which 98 were sensitive to caffeine. The genes mutated in these sensitive clones were involved in a number of cellular roles including the H(2)O(2)-induced Pap1 and Sty1 stress pathways, the integrity and calcineurin pathways, cell morphology and chromatin remodeling. We have investigated the role of the oxidative stress pathways in sensing and promoting survival to caffeine. The Pap1 and the Sty1 pathways are both required for normal tolerance to caffeine, but only the Sty1 pathway is activated by the drug. Cells lacking Pap1 are sensitive to caffeine due to the decreased expression of the efflux pump Hba2. Indeed, ?hba2 cells are sensitive to caffeine, and constitutive activation of the Pap1 pathway enhances resistance to caffeine in an Hba2-dependent manner. CONCLUSIONS/SIGNIFICANCE: With our caffeine-sensitive, genome-wide screen of an S. pombe deletion collection, we have demonstrated the importance of some oxidative stress pathway components on wild-type tolerance to the drug. |
format | Text |
id | pubmed-2720375 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-27203752009-08-12 Genome-Wide Screen of Genes Required for Caffeine Tolerance in Fission Yeast Calvo, Isabel A. Gabrielli, Natalia Iglesias-Baena, Iván García-Santamarina, Sarela Hoe, Kwang-Lae Kim, Dong Uk Sansó, Miriam Zuin, Alice Pérez, Pilar Ayté, José Hidalgo, Elena PLoS One Research Article BACKGROUND: An excess of caffeine is cytotoxic to all eukaryotic cell types. We aim to study how cells become tolerant to a toxic dose of this drug, and the relationship between caffeine and oxidative stress pathways. METHODOLOGY/PRINCIPAL FINDINGS: We searched for Schizosaccharomyces pombe mutants with inhibited growth on caffeine-containing plates. We screened a collection of 2,700 haploid mutant cells, of which 98 were sensitive to caffeine. The genes mutated in these sensitive clones were involved in a number of cellular roles including the H(2)O(2)-induced Pap1 and Sty1 stress pathways, the integrity and calcineurin pathways, cell morphology and chromatin remodeling. We have investigated the role of the oxidative stress pathways in sensing and promoting survival to caffeine. The Pap1 and the Sty1 pathways are both required for normal tolerance to caffeine, but only the Sty1 pathway is activated by the drug. Cells lacking Pap1 are sensitive to caffeine due to the decreased expression of the efflux pump Hba2. Indeed, ?hba2 cells are sensitive to caffeine, and constitutive activation of the Pap1 pathway enhances resistance to caffeine in an Hba2-dependent manner. CONCLUSIONS/SIGNIFICANCE: With our caffeine-sensitive, genome-wide screen of an S. pombe deletion collection, we have demonstrated the importance of some oxidative stress pathway components on wild-type tolerance to the drug. Public Library of Science 2009-08-12 /pmc/articles/PMC2720375/ /pubmed/19672306 http://dx.doi.org/10.1371/journal.pone.0006619 Text en Calvo et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Calvo, Isabel A. Gabrielli, Natalia Iglesias-Baena, Iván García-Santamarina, Sarela Hoe, Kwang-Lae Kim, Dong Uk Sansó, Miriam Zuin, Alice Pérez, Pilar Ayté, José Hidalgo, Elena Genome-Wide Screen of Genes Required for Caffeine Tolerance in Fission Yeast |
title | Genome-Wide Screen of Genes Required for Caffeine Tolerance in Fission Yeast |
title_full | Genome-Wide Screen of Genes Required for Caffeine Tolerance in Fission Yeast |
title_fullStr | Genome-Wide Screen of Genes Required for Caffeine Tolerance in Fission Yeast |
title_full_unstemmed | Genome-Wide Screen of Genes Required for Caffeine Tolerance in Fission Yeast |
title_short | Genome-Wide Screen of Genes Required for Caffeine Tolerance in Fission Yeast |
title_sort | genome-wide screen of genes required for caffeine tolerance in fission yeast |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720375/ https://www.ncbi.nlm.nih.gov/pubmed/19672306 http://dx.doi.org/10.1371/journal.pone.0006619 |
work_keys_str_mv | AT calvoisabela genomewidescreenofgenesrequiredforcaffeinetoleranceinfissionyeast AT gabriellinatalia genomewidescreenofgenesrequiredforcaffeinetoleranceinfissionyeast AT iglesiasbaenaivan genomewidescreenofgenesrequiredforcaffeinetoleranceinfissionyeast AT garciasantamarinasarela genomewidescreenofgenesrequiredforcaffeinetoleranceinfissionyeast AT hoekwanglae genomewidescreenofgenesrequiredforcaffeinetoleranceinfissionyeast AT kimdonguk genomewidescreenofgenesrequiredforcaffeinetoleranceinfissionyeast AT sansomiriam genomewidescreenofgenesrequiredforcaffeinetoleranceinfissionyeast AT zuinalice genomewidescreenofgenesrequiredforcaffeinetoleranceinfissionyeast AT perezpilar genomewidescreenofgenesrequiredforcaffeinetoleranceinfissionyeast AT aytejose genomewidescreenofgenesrequiredforcaffeinetoleranceinfissionyeast AT hidalgoelena genomewidescreenofgenesrequiredforcaffeinetoleranceinfissionyeast |