Cargando…
Converging Pharmacological and Genetic Evidence Indicates a Role for Steroid Sulfatase in Attention
BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a complex neurodevelopmental disorder characterized by deficits in attention, increased motor impulsivity, and hyperactivity. Preliminary work in mice and humans has suggested the X-linked gene STS (which encodes the enzyme steroid sulfa...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720459/ https://www.ncbi.nlm.nih.gov/pubmed/19251250 http://dx.doi.org/10.1016/j.biopsych.2009.01.001 |
Sumario: | BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a complex neurodevelopmental disorder characterized by deficits in attention, increased motor impulsivity, and hyperactivity. Preliminary work in mice and humans has suggested the X-linked gene STS (which encodes the enzyme steroid sulfatase) as a mediator of attentional functioning and as a candidate gene for ADHD. METHODS: The effects of modulating the murine steroid sulfatase axis pharmacologically (through administration of the substrate dehydroepiandrosterone sulfate [DHEAS], 0–40mg/kg, or acute inhibition of the enzyme by COUMATE, 10mg/kg) or genetically (through loss of the gene in 39,X(Y)*O mice) were assayed using the 5-choice serial reaction time task (5-CSRTT) a test of visuospatial attention and response control, and a locomotor activity paradigm. RESULTS: DHEAS administration improved 5-CSRTT performance under attentionally demanding conditions, whereas steroid sulfatase inhibition impaired accuracy under the same conditions. Loss of Sts expression constitutively throughout development in 39,X(Y)*O mice resulted in deficits in 5-CSRTT performance at short stimulus durations and reduced anticipatory responding. Neither the pharmacologic nor the genetic manipulations affected basic locomotor activity. CONCLUSIONS: These data provide converging evidence indicating a role for steroid sulfatase in discrete aspects of attentional functioning and are suggestive of a role in motor impulsivity. The findings provide novel insights into the neurobiology of attention and strengthen the notion of STS as a candidate gene for the attentional component of ADHD. |
---|