Cargando…
Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway
BACKGROUND: Sustainable and economically viable manufacturing of bioethanol from lignocellulose raw material is dependent on the availability of a robust ethanol producing microorganism, able to ferment all sugars present in the feedstock, including the pentose sugars L-arabinose and D-xylose. Sacch...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720912/ https://www.ncbi.nlm.nih.gov/pubmed/19630951 http://dx.doi.org/10.1186/1475-2859-8-40 |
Sumario: | BACKGROUND: Sustainable and economically viable manufacturing of bioethanol from lignocellulose raw material is dependent on the availability of a robust ethanol producing microorganism, able to ferment all sugars present in the feedstock, including the pentose sugars L-arabinose and D-xylose. Saccharomyces cerevisiae is a robust ethanol producer, but needs to be engineered to achieve pentose sugar fermentation. RESULTS: A new recombinant S. cerevisiae strain expressing an improved fungal pathway for the utilization of L-arabinose and D-xylose was constructed and characterized. The new strain grew aerobically on L-arabinose and D-xylose as sole carbon sources. The activities of the enzymes constituting the pentose utilization pathway(s) and product formation during anaerobic mixed sugar fermentation were characterized. CONCLUSION: Pentose fermenting recombinant S. cerevisiae strains were obtained by the expression of a pentose utilization pathway of entirely fungal origin. During anaerobic fermentation the strain produced biomass and ethanol. L-arabitol yield was 0.48 g per gram of consumed pentose sugar, which is considerably less than previously reported for D-xylose reductase expressing strains co-fermenting L-arabinose and D-xylose, and the xylitol yield was 0.07 g per gram of consumed pentose sugar. |
---|