Cargando…

New Aldehyde Tag Sequences Identified by Screening Formylglycine Generating Enzymes in Vitro and in Vivo

[Image: see text] Formylglycine generating enzyme (FGE) performs a critical posttranslational modification of type I sulfatases, converting cysteine within the motif CxPxR to the aldehyde-bearing residue formylglycine (FGly). This concise motif can be installed within heterologous proteins as a gene...

Descripción completa

Detalles Bibliográficos
Autores principales: Rush, Jason S., Bertozzi, Carolyn R.
Formato: Texto
Lenguaje:English
Publicado: American Chemical Society 2008
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2721638/
https://www.ncbi.nlm.nih.gov/pubmed/18722427
http://dx.doi.org/10.1021/ja804530w
Descripción
Sumario:[Image: see text] Formylglycine generating enzyme (FGE) performs a critical posttranslational modification of type I sulfatases, converting cysteine within the motif CxPxR to the aldehyde-bearing residue formylglycine (FGly). This concise motif can be installed within heterologous proteins as a genetically encoded “aldehyde tag” for site-specific labeling with aminooxy- or hydrazide-functionalized probes. In this report, we screened FGEs from M. tuberculosis and S. coelicolor against synthetic peptide libraries and identified new substrate sequences that diverge from the canonical motif. We found that E. coli’s FGE-like activity is similarly promiscuous, enabling the use of novel aldehyde tag sequences for in vivo modification of recombinant proteins.