Cargando…
A new cold-adapted β-D-galactosidase from the Antarctic Arthrobacter sp. 32c – gene cloning, overexpression, purification and properties
BACKGROUND: The development of a new cold-active β-D-galactosidases and microorganisms that efficiently ferment lactose is of high biotechnological interest, particularly for lactose removal in milk and dairy products at low temperatures and for cheese whey bioremediation processes with simultaneous...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723119/ https://www.ncbi.nlm.nih.gov/pubmed/19631003 http://dx.doi.org/10.1186/1471-2180-9-151 |
_version_ | 1782170359480451072 |
---|---|
author | Hildebrandt, Piotr Wanarska, Marta Kur, Józef |
author_facet | Hildebrandt, Piotr Wanarska, Marta Kur, Józef |
author_sort | Hildebrandt, Piotr |
collection | PubMed |
description | BACKGROUND: The development of a new cold-active β-D-galactosidases and microorganisms that efficiently ferment lactose is of high biotechnological interest, particularly for lactose removal in milk and dairy products at low temperatures and for cheese whey bioremediation processes with simultaneous bio-ethanol production. RESULTS: In this article, we present a new β-D-galactosidase as a candidate to be applied in the above mentioned biotechnological processes. The gene encoding this β-D-galactosidase has been isolated from the genomic DNA library of Antarctic bacterium Arthrobacter sp. 32c, sequenced, cloned, expressed in Escherichia coli and Pichia pastoris, purified and characterized. 27 mg of β-D-galactosidase was purified from 1 L of culture with the use of an intracellular E. coli expression system. The protein was also produced extracellularly by P. pastoris in high amounts giving approximately 137 mg and 97 mg of purified enzyme from 1 L of P. pastoris culture for the AOX1 and a constitutive system, respectively. The enzyme was purified to electrophoretic homogeneity by using either one step- or a fast two step- procedure including protein precipitation and affinity chromatography. The enzyme was found to be active as a homotrimeric protein consisting of 695 amino acid residues in each monomer. Although, the maximum activity of the enzyme was determined at pH 6.5 and 50°C, 60% of the maximum activity of the enzyme was determined at 25°C and 15% of the maximum activity was detected at 0°C. CONCLUSION: The properties of Arthrobacter sp. 32cβ-D-galactosidase suggest that this enzyme could be useful for low-cost, industrial conversion of lactose into galactose and glucose in milk products and could be an interesting alternative for the production of ethanol from lactose-based feedstock. |
format | Text |
id | pubmed-2723119 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-27231192009-08-08 A new cold-adapted β-D-galactosidase from the Antarctic Arthrobacter sp. 32c – gene cloning, overexpression, purification and properties Hildebrandt, Piotr Wanarska, Marta Kur, Józef BMC Microbiol Research article BACKGROUND: The development of a new cold-active β-D-galactosidases and microorganisms that efficiently ferment lactose is of high biotechnological interest, particularly for lactose removal in milk and dairy products at low temperatures and for cheese whey bioremediation processes with simultaneous bio-ethanol production. RESULTS: In this article, we present a new β-D-galactosidase as a candidate to be applied in the above mentioned biotechnological processes. The gene encoding this β-D-galactosidase has been isolated from the genomic DNA library of Antarctic bacterium Arthrobacter sp. 32c, sequenced, cloned, expressed in Escherichia coli and Pichia pastoris, purified and characterized. 27 mg of β-D-galactosidase was purified from 1 L of culture with the use of an intracellular E. coli expression system. The protein was also produced extracellularly by P. pastoris in high amounts giving approximately 137 mg and 97 mg of purified enzyme from 1 L of P. pastoris culture for the AOX1 and a constitutive system, respectively. The enzyme was purified to electrophoretic homogeneity by using either one step- or a fast two step- procedure including protein precipitation and affinity chromatography. The enzyme was found to be active as a homotrimeric protein consisting of 695 amino acid residues in each monomer. Although, the maximum activity of the enzyme was determined at pH 6.5 and 50°C, 60% of the maximum activity of the enzyme was determined at 25°C and 15% of the maximum activity was detected at 0°C. CONCLUSION: The properties of Arthrobacter sp. 32cβ-D-galactosidase suggest that this enzyme could be useful for low-cost, industrial conversion of lactose into galactose and glucose in milk products and could be an interesting alternative for the production of ethanol from lactose-based feedstock. BioMed Central 2009-07-27 /pmc/articles/PMC2723119/ /pubmed/19631003 http://dx.doi.org/10.1186/1471-2180-9-151 Text en Copyright ©2009 Hildebrandt et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research article Hildebrandt, Piotr Wanarska, Marta Kur, Józef A new cold-adapted β-D-galactosidase from the Antarctic Arthrobacter sp. 32c – gene cloning, overexpression, purification and properties |
title | A new cold-adapted β-D-galactosidase from the Antarctic Arthrobacter sp. 32c – gene cloning, overexpression, purification and properties |
title_full | A new cold-adapted β-D-galactosidase from the Antarctic Arthrobacter sp. 32c – gene cloning, overexpression, purification and properties |
title_fullStr | A new cold-adapted β-D-galactosidase from the Antarctic Arthrobacter sp. 32c – gene cloning, overexpression, purification and properties |
title_full_unstemmed | A new cold-adapted β-D-galactosidase from the Antarctic Arthrobacter sp. 32c – gene cloning, overexpression, purification and properties |
title_short | A new cold-adapted β-D-galactosidase from the Antarctic Arthrobacter sp. 32c – gene cloning, overexpression, purification and properties |
title_sort | new cold-adapted β-d-galactosidase from the antarctic arthrobacter sp. 32c – gene cloning, overexpression, purification and properties |
topic | Research article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723119/ https://www.ncbi.nlm.nih.gov/pubmed/19631003 http://dx.doi.org/10.1186/1471-2180-9-151 |
work_keys_str_mv | AT hildebrandtpiotr anewcoldadaptedbdgalactosidasefromtheantarcticarthrobactersp32cgenecloningoverexpressionpurificationandproperties AT wanarskamarta anewcoldadaptedbdgalactosidasefromtheantarcticarthrobactersp32cgenecloningoverexpressionpurificationandproperties AT kurjozef anewcoldadaptedbdgalactosidasefromtheantarcticarthrobactersp32cgenecloningoverexpressionpurificationandproperties AT hildebrandtpiotr newcoldadaptedbdgalactosidasefromtheantarcticarthrobactersp32cgenecloningoverexpressionpurificationandproperties AT wanarskamarta newcoldadaptedbdgalactosidasefromtheantarcticarthrobactersp32cgenecloningoverexpressionpurificationandproperties AT kurjozef newcoldadaptedbdgalactosidasefromtheantarcticarthrobactersp32cgenecloningoverexpressionpurificationandproperties |