Cargando…

New Alzheimer Amyloid β Responsive Genes Identified in Human Neuroblastoma Cells by Hierarchical Clustering

Alzheimer's disease (AD) is characterized by neuronal degeneration and cell loss. Aβ(42), in contrast to Aβ(40), is thought to be the pathogenic form triggering the pathological cascade in AD. In order to unravel overall gene regulation we monitored the transcriptomic responses to increased or...

Descripción completa

Detalles Bibliográficos
Autores principales: Uhrig, Markus, Ittrich, Carina, Wiedmann, Verena, Knyazev, Yuri, Weninger, Annette, Riemenschneider, Matthias, Hartmann, Tobias
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727959/
https://www.ncbi.nlm.nih.gov/pubmed/19707560
http://dx.doi.org/10.1371/journal.pone.0006779
Descripción
Sumario:Alzheimer's disease (AD) is characterized by neuronal degeneration and cell loss. Aβ(42), in contrast to Aβ(40), is thought to be the pathogenic form triggering the pathological cascade in AD. In order to unravel overall gene regulation we monitored the transcriptomic responses to increased or decreased Aβ(40) and Aβ(42) levels, generated and derived from its precursor C99 (C-terminal fragment of APP comprising 99 amino acids) in human neuroblastoma cells. We identified fourteen differentially expressed transcripts by hierarchical clustering and discussed their involvement in AD. These fourteen transcripts were grouped into two main clusters each showing distinct differential expression patterns depending on Aβ(40) and Aβ(42) levels. Among these transcripts we discovered an unexpected inverse and strong differential expression of neurogenin 2 (NEUROG2) and KIAA0125 in all examined cell clones. C99-overexpression had a similar effect on NEUROG2 and KIAA0125 expression as a decreased Aβ(42)/Aβ(40) ratio. Importantly however, an increased Aβ(42)/Aβ(40) ratio, which is typical of AD, had an inverse expression pattern of NEUROG2 and KIAA0125: An increased Aβ(42)/Aβ(40) ratio up-regulated NEUROG2, but down-regulated KIAA0125, whereas the opposite regulation pattern was observed for a decreased Aβ(42)/Aβ(40) ratio. We discuss the possibilities that the so far uncharacterized KIAA0125 might be a counter player of NEUROG2 and that KIAA0125 could be involved in neurogenesis, due to the involvement of NEUROG2 in developmental neural processes.