Cargando…
LRP1 Regulates Architecture of the Vascular Wall by Controlling PDGFRβ-Dependent Phosphatidylinositol 3-Kinase Activation
BACKGROUND: Low density lipoprotein receptor-related protein 1 (LRP1) protects against atherosclerosis by regulating the activation of platelet-derived growth factor receptor β (PDGFRβ) in vascular smooth muscle cells (SMCs). Activated PDGFRβ undergoes tyrosine phosphorylation and subsequently inter...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2734324/ https://www.ncbi.nlm.nih.gov/pubmed/19742316 http://dx.doi.org/10.1371/journal.pone.0006922 |
Sumario: | BACKGROUND: Low density lipoprotein receptor-related protein 1 (LRP1) protects against atherosclerosis by regulating the activation of platelet-derived growth factor receptor β (PDGFRβ) in vascular smooth muscle cells (SMCs). Activated PDGFRβ undergoes tyrosine phosphorylation and subsequently interacts with various signaling molecules, including phosphatidylinositol 3-kinase (PI3K), which binds to the phosphorylated tyrosine 739/750 residues in mice, and thus regulates actin polymerization and cell movement. METHODS AND PRINCIPAL FINDINGS: In this study, we found disorganized actin in the form of membrane ruffling and enhanced cell migration in LRP1-deficient (LRP1−/−) SMCs. Marfan syndrome-like phenotypes such as tortuous aortas, disrupted elastic layers and abnormally activated transforming growth factor β (TGFβ) signaling are present in smooth muscle-specific LRP1 knockout (smLRP1−/−) mice. To investigate the role of LRP1-regulated PI3K activation by PDGFRβ in atherogenesis, we generated a strain of smLRP1−/− mice in which tyrosine 739/750 of the PDGFRβ had been mutated to phenylalanines (PDGFRβ F2/F2). Spontaneous atherosclerosis was significantly reduced in the absence of hypercholesterolemia in these mice compared to smLRP1−/− animals that express wild type PDGFR. Normal actin organization was restored and spontaneous SMC migration as well as PDGF-BB-induced chemotaxis was dramatically reduced, despite continued overactivation of TGFβ signaling, as indicated by high levels of nuclear phospho-Smad2. CONCLUSIONS AND SIGNIFICANCE: Our data suggest that LRP1 regulates actin organization and cell migration by controlling PDGFRβ-dependent activation of PI3K. TGFβ activation alone is not sufficient for the expression of the Marfan-like vascular phenotype. Thus, regulation of PI3 Kinase by PDGFRβ is essential for maintaining vascular integrity, and for the prevention of atherosclerosis as well as Marfan syndrome. |
---|