Cargando…

THE HSP82 MOLECULAR CHAPERONE CAN PROMOTE A SWITCH BETWEEN UNEXTENDABLE AND EXTENDABLE TELOMERE STATES

Distinct protein assemblies are nucleated at telomeric DNA to both guard the ends from damage and lengthen the DNA following replication. In yeast, Cdc13 recruits either Stn1/Ten1 to form a protective cap or the telomerase holoenzyme to extend the DNA. We have established an in vitro yeast telomere...

Descripción completa

Detalles Bibliográficos
Autores principales: DeZwaan, Diane C., Toogun, Oyetunji A., Echtenkamp, Frank J., Freeman, Brian C.
Formato: Texto
Lenguaje:English
Publicado: 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2744139/
https://www.ncbi.nlm.nih.gov/pubmed/19525972
http://dx.doi.org/10.1038/nsmb.1616
Descripción
Sumario:Distinct protein assemblies are nucleated at telomeric DNA to both guard the ends from damage and lengthen the DNA following replication. In yeast, Cdc13 recruits either Stn1/Ten1 to form a protective cap or the telomerase holoenzyme to extend the DNA. We have established an in vitro yeast telomere system in which Stn1/Ten1-unextendable or telomerase-extendable states can be observed. Both assemblies are Cdc13-dependent, as the Cdc13 C-terminal region supports Stn1/Ten1 interactions and the N-terminal region contains a telomerase activation function. Notably, the yeast Hsp90 chaperone Hsp82 mediates the switch between the telomere capping and extending structures by modulating the DNA binding activity of Cdc13. Taken together, our data demonstrate that the Hsp82 chaperone facilitates telomere DNA maintenance by promoting transitions between different operative complexes and by reducing the potential for binding events that would otherwise block the assembly of downstream structures.