Cargando…

Protective effect of transgenic expression of porcine heat shock protein 70 on hypothalamic ischemic and oxidative damage in a mouse model of heatstroke

BACKGROUND: Transgenic mice have been used to examine the role of heat shock protein (HSP)72 in experimental heatstroke. Transgenic mice that were heterozygous for a porcine HSP70β gene ([+] HSP72) and transgene-negative littermate controls ([-] HSP72), under pentobarbital sodium anesthesia, were su...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Zhih-Cherng, Wu, Wen-Shian, Lin, Mao-Tsun, Hsu, Chuan-Chih
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745415/
https://www.ncbi.nlm.nih.gov/pubmed/19725984
http://dx.doi.org/10.1186/1471-2202-10-111
_version_ 1782171962928267264
author Chen, Zhih-Cherng
Wu, Wen-Shian
Lin, Mao-Tsun
Hsu, Chuan-Chih
author_facet Chen, Zhih-Cherng
Wu, Wen-Shian
Lin, Mao-Tsun
Hsu, Chuan-Chih
author_sort Chen, Zhih-Cherng
collection PubMed
description BACKGROUND: Transgenic mice have been used to examine the role of heat shock protein (HSP)72 in experimental heatstroke. Transgenic mice that were heterozygous for a porcine HSP70β gene ([+] HSP72) and transgene-negative littermate controls ([-] HSP72), under pentobarbital sodium anesthesia, were subjected to heat stress to induce heatstroke. It was found that the overexpression of HSP72 in multiple organs improved survival during heatstroke by reducing hypotension and cerebral ischemia and damage in mice. Herein we attempted to further assess the effect of heat exposure on thermoregulatory function, hypothalamic integration, and survival in unrestrained, unanesthetized [+]HSP72 and compare with those of [-]HSP72. In this research with the transgenic mice, we first conducted several biochemical, physiologic and histological determinations and then investigated the beneficial effects of HSP72 overexpression on the identified hypothalamic deficits, thermoregulatory dysfunction, and mortality during heatstroke. RESULTS: We report here that when [-]HSP72 mice underwent heat stress (ambient temperature 42.4°C for 1 h), the fraction survival and core temperature at 4 h after heat stress were found to be 0 of 12 and 34.2°C ± 0.4°C, respectively. Mice that survived to day 4 after heat stress were considered as survivors. In [+]HSP72 mice, when exposed to the same heat treatment, both fraction survival and core temperature values were significantly increased to new values of 12/12 and 37.4°C ± 0.3°C, respectively. Compared to [-]HSP mice, [+]HSP72 mice displayed lower hypothalamic values of cellular ischemia (e.g., glutamate and lactate-to-pyruvate ratio) and damage (e.g., glycerol) markers, pro-oxidant enzymes (e.g., lipid peroxidation and glutathione oxidation), pro-inflammatory cytokines (e.g., interleukin-1beta and tumor necrosis factor-alpha), and neuronal damage score evaluated 4 h after heat stress. In contrast, [+]HSP72 mice had higher hypothalamic values of antioxidant defences (e.g., glutathione peroxidase and glutathione reductase), ATP, and HSP72 expression. CONCLUSION: This study indicates that HSP72 overexpression appears to be critical to the development of thermotolerance and protection from heat-induced hypothalamic ischemic and oxidative damage.
format Text
id pubmed-2745415
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-27454152009-09-17 Protective effect of transgenic expression of porcine heat shock protein 70 on hypothalamic ischemic and oxidative damage in a mouse model of heatstroke Chen, Zhih-Cherng Wu, Wen-Shian Lin, Mao-Tsun Hsu, Chuan-Chih BMC Neurosci Research Article BACKGROUND: Transgenic mice have been used to examine the role of heat shock protein (HSP)72 in experimental heatstroke. Transgenic mice that were heterozygous for a porcine HSP70β gene ([+] HSP72) and transgene-negative littermate controls ([-] HSP72), under pentobarbital sodium anesthesia, were subjected to heat stress to induce heatstroke. It was found that the overexpression of HSP72 in multiple organs improved survival during heatstroke by reducing hypotension and cerebral ischemia and damage in mice. Herein we attempted to further assess the effect of heat exposure on thermoregulatory function, hypothalamic integration, and survival in unrestrained, unanesthetized [+]HSP72 and compare with those of [-]HSP72. In this research with the transgenic mice, we first conducted several biochemical, physiologic and histological determinations and then investigated the beneficial effects of HSP72 overexpression on the identified hypothalamic deficits, thermoregulatory dysfunction, and mortality during heatstroke. RESULTS: We report here that when [-]HSP72 mice underwent heat stress (ambient temperature 42.4°C for 1 h), the fraction survival and core temperature at 4 h after heat stress were found to be 0 of 12 and 34.2°C ± 0.4°C, respectively. Mice that survived to day 4 after heat stress were considered as survivors. In [+]HSP72 mice, when exposed to the same heat treatment, both fraction survival and core temperature values were significantly increased to new values of 12/12 and 37.4°C ± 0.3°C, respectively. Compared to [-]HSP mice, [+]HSP72 mice displayed lower hypothalamic values of cellular ischemia (e.g., glutamate and lactate-to-pyruvate ratio) and damage (e.g., glycerol) markers, pro-oxidant enzymes (e.g., lipid peroxidation and glutathione oxidation), pro-inflammatory cytokines (e.g., interleukin-1beta and tumor necrosis factor-alpha), and neuronal damage score evaluated 4 h after heat stress. In contrast, [+]HSP72 mice had higher hypothalamic values of antioxidant defences (e.g., glutathione peroxidase and glutathione reductase), ATP, and HSP72 expression. CONCLUSION: This study indicates that HSP72 overexpression appears to be critical to the development of thermotolerance and protection from heat-induced hypothalamic ischemic and oxidative damage. BioMed Central 2009-09-03 /pmc/articles/PMC2745415/ /pubmed/19725984 http://dx.doi.org/10.1186/1471-2202-10-111 Text en Copyright © 2009 Chen et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Chen, Zhih-Cherng
Wu, Wen-Shian
Lin, Mao-Tsun
Hsu, Chuan-Chih
Protective effect of transgenic expression of porcine heat shock protein 70 on hypothalamic ischemic and oxidative damage in a mouse model of heatstroke
title Protective effect of transgenic expression of porcine heat shock protein 70 on hypothalamic ischemic and oxidative damage in a mouse model of heatstroke
title_full Protective effect of transgenic expression of porcine heat shock protein 70 on hypothalamic ischemic and oxidative damage in a mouse model of heatstroke
title_fullStr Protective effect of transgenic expression of porcine heat shock protein 70 on hypothalamic ischemic and oxidative damage in a mouse model of heatstroke
title_full_unstemmed Protective effect of transgenic expression of porcine heat shock protein 70 on hypothalamic ischemic and oxidative damage in a mouse model of heatstroke
title_short Protective effect of transgenic expression of porcine heat shock protein 70 on hypothalamic ischemic and oxidative damage in a mouse model of heatstroke
title_sort protective effect of transgenic expression of porcine heat shock protein 70 on hypothalamic ischemic and oxidative damage in a mouse model of heatstroke
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745415/
https://www.ncbi.nlm.nih.gov/pubmed/19725984
http://dx.doi.org/10.1186/1471-2202-10-111
work_keys_str_mv AT chenzhihcherng protectiveeffectoftransgenicexpressionofporcineheatshockprotein70onhypothalamicischemicandoxidativedamageinamousemodelofheatstroke
AT wuwenshian protectiveeffectoftransgenicexpressionofporcineheatshockprotein70onhypothalamicischemicandoxidativedamageinamousemodelofheatstroke
AT linmaotsun protectiveeffectoftransgenicexpressionofporcineheatshockprotein70onhypothalamicischemicandoxidativedamageinamousemodelofheatstroke
AT hsuchuanchih protectiveeffectoftransgenicexpressionofporcineheatshockprotein70onhypothalamicischemicandoxidativedamageinamousemodelofheatstroke