Cargando…

Diversity of Chemical Mechanisms in Thioredoxin Catalysis Revealed by Single-Molecule Force Spectroscopy

Thioredoxins are oxido-reductase enzymes present in all organisms, catalyzing the reduction of disulfide bonds in proteins. By applying a calibrated force to a substrate disulfide, the chemical mechanisms of Trx catalysis can be examined in detail at the single molecule level. Here we use single mol...

Descripción completa

Detalles Bibliográficos
Autores principales: Perez-Jimenez, Raul, Li, Jingyuan, Kosuri, Pallav, Sanchez-Romero, Inmaculada, Wiita, Arun P., Rodriguez-Larrea, David, Chueca, Ana, Holmgren, Arne, Miranda-Vizuete, Antonio, Becker, Katja, Cho, Seung-Hyun, Beckwith, Jon, Gelhaye, Eric, Jacquot, Jean P., Gaucher, Eric, Sanchez-Ruiz, Jose M., Berne, Bruce J., Fernandez, Julio M.
Formato: Texto
Lenguaje:English
Publicado: 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745927/
https://www.ncbi.nlm.nih.gov/pubmed/19597482
http://dx.doi.org/10.1038/nsmb.1627
_version_ 1782172014380843008
author Perez-Jimenez, Raul
Li, Jingyuan
Kosuri, Pallav
Sanchez-Romero, Inmaculada
Wiita, Arun P.
Rodriguez-Larrea, David
Chueca, Ana
Holmgren, Arne
Miranda-Vizuete, Antonio
Becker, Katja
Cho, Seung-Hyun
Beckwith, Jon
Gelhaye, Eric
Jacquot, Jean P.
Gaucher, Eric
Sanchez-Ruiz, Jose M.
Berne, Bruce J.
Fernandez, Julio M.
author_facet Perez-Jimenez, Raul
Li, Jingyuan
Kosuri, Pallav
Sanchez-Romero, Inmaculada
Wiita, Arun P.
Rodriguez-Larrea, David
Chueca, Ana
Holmgren, Arne
Miranda-Vizuete, Antonio
Becker, Katja
Cho, Seung-Hyun
Beckwith, Jon
Gelhaye, Eric
Jacquot, Jean P.
Gaucher, Eric
Sanchez-Ruiz, Jose M.
Berne, Bruce J.
Fernandez, Julio M.
author_sort Perez-Jimenez, Raul
collection PubMed
description Thioredoxins are oxido-reductase enzymes present in all organisms, catalyzing the reduction of disulfide bonds in proteins. By applying a calibrated force to a substrate disulfide, the chemical mechanisms of Trx catalysis can be examined in detail at the single molecule level. Here we use single molecule force-clamp spectroscopy to explore the chemical evolution of Trx catalysis by probing the chemistry of eight different thioredoxin enzymes. While all Trxs show a characteristic Michaelis-Menten mechanism detected when the disulfide bond is stretched at low forces, two different chemical behaviors distinguish bacterial from eukaryotic-origin Trxs at high forces. Eukaryotic-origin Trxs reduce disulfide bonds through a single-electron transfer reaction (SET) whereas bacterial-origin Trxs exhibit both nucleophilic substitution (S(N)2) and SET reactions. A computational analysis of Trx structures identifies the evolution of the binding groove as an important factor controlling the chemistry of Trx catalysis.
format Text
id pubmed-2745927
institution National Center for Biotechnology Information
language English
publishDate 2009
record_format MEDLINE/PubMed
spelling pubmed-27459272010-02-01 Diversity of Chemical Mechanisms in Thioredoxin Catalysis Revealed by Single-Molecule Force Spectroscopy Perez-Jimenez, Raul Li, Jingyuan Kosuri, Pallav Sanchez-Romero, Inmaculada Wiita, Arun P. Rodriguez-Larrea, David Chueca, Ana Holmgren, Arne Miranda-Vizuete, Antonio Becker, Katja Cho, Seung-Hyun Beckwith, Jon Gelhaye, Eric Jacquot, Jean P. Gaucher, Eric Sanchez-Ruiz, Jose M. Berne, Bruce J. Fernandez, Julio M. Nat Struct Mol Biol Article Thioredoxins are oxido-reductase enzymes present in all organisms, catalyzing the reduction of disulfide bonds in proteins. By applying a calibrated force to a substrate disulfide, the chemical mechanisms of Trx catalysis can be examined in detail at the single molecule level. Here we use single molecule force-clamp spectroscopy to explore the chemical evolution of Trx catalysis by probing the chemistry of eight different thioredoxin enzymes. While all Trxs show a characteristic Michaelis-Menten mechanism detected when the disulfide bond is stretched at low forces, two different chemical behaviors distinguish bacterial from eukaryotic-origin Trxs at high forces. Eukaryotic-origin Trxs reduce disulfide bonds through a single-electron transfer reaction (SET) whereas bacterial-origin Trxs exhibit both nucleophilic substitution (S(N)2) and SET reactions. A computational analysis of Trx structures identifies the evolution of the binding groove as an important factor controlling the chemistry of Trx catalysis. 2009-07-13 2009-08 /pmc/articles/PMC2745927/ /pubmed/19597482 http://dx.doi.org/10.1038/nsmb.1627 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Perez-Jimenez, Raul
Li, Jingyuan
Kosuri, Pallav
Sanchez-Romero, Inmaculada
Wiita, Arun P.
Rodriguez-Larrea, David
Chueca, Ana
Holmgren, Arne
Miranda-Vizuete, Antonio
Becker, Katja
Cho, Seung-Hyun
Beckwith, Jon
Gelhaye, Eric
Jacquot, Jean P.
Gaucher, Eric
Sanchez-Ruiz, Jose M.
Berne, Bruce J.
Fernandez, Julio M.
Diversity of Chemical Mechanisms in Thioredoxin Catalysis Revealed by Single-Molecule Force Spectroscopy
title Diversity of Chemical Mechanisms in Thioredoxin Catalysis Revealed by Single-Molecule Force Spectroscopy
title_full Diversity of Chemical Mechanisms in Thioredoxin Catalysis Revealed by Single-Molecule Force Spectroscopy
title_fullStr Diversity of Chemical Mechanisms in Thioredoxin Catalysis Revealed by Single-Molecule Force Spectroscopy
title_full_unstemmed Diversity of Chemical Mechanisms in Thioredoxin Catalysis Revealed by Single-Molecule Force Spectroscopy
title_short Diversity of Chemical Mechanisms in Thioredoxin Catalysis Revealed by Single-Molecule Force Spectroscopy
title_sort diversity of chemical mechanisms in thioredoxin catalysis revealed by single-molecule force spectroscopy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745927/
https://www.ncbi.nlm.nih.gov/pubmed/19597482
http://dx.doi.org/10.1038/nsmb.1627
work_keys_str_mv AT perezjimenezraul diversityofchemicalmechanismsinthioredoxincatalysisrevealedbysinglemoleculeforcespectroscopy
AT lijingyuan diversityofchemicalmechanismsinthioredoxincatalysisrevealedbysinglemoleculeforcespectroscopy
AT kosuripallav diversityofchemicalmechanismsinthioredoxincatalysisrevealedbysinglemoleculeforcespectroscopy
AT sanchezromeroinmaculada diversityofchemicalmechanismsinthioredoxincatalysisrevealedbysinglemoleculeforcespectroscopy
AT wiitaarunp diversityofchemicalmechanismsinthioredoxincatalysisrevealedbysinglemoleculeforcespectroscopy
AT rodriguezlarreadavid diversityofchemicalmechanismsinthioredoxincatalysisrevealedbysinglemoleculeforcespectroscopy
AT chuecaana diversityofchemicalmechanismsinthioredoxincatalysisrevealedbysinglemoleculeforcespectroscopy
AT holmgrenarne diversityofchemicalmechanismsinthioredoxincatalysisrevealedbysinglemoleculeforcespectroscopy
AT mirandavizueteantonio diversityofchemicalmechanismsinthioredoxincatalysisrevealedbysinglemoleculeforcespectroscopy
AT beckerkatja diversityofchemicalmechanismsinthioredoxincatalysisrevealedbysinglemoleculeforcespectroscopy
AT choseunghyun diversityofchemicalmechanismsinthioredoxincatalysisrevealedbysinglemoleculeforcespectroscopy
AT beckwithjon diversityofchemicalmechanismsinthioredoxincatalysisrevealedbysinglemoleculeforcespectroscopy
AT gelhayeeric diversityofchemicalmechanismsinthioredoxincatalysisrevealedbysinglemoleculeforcespectroscopy
AT jacquotjeanp diversityofchemicalmechanismsinthioredoxincatalysisrevealedbysinglemoleculeforcespectroscopy
AT gauchereric diversityofchemicalmechanismsinthioredoxincatalysisrevealedbysinglemoleculeforcespectroscopy
AT sanchezruizjosem diversityofchemicalmechanismsinthioredoxincatalysisrevealedbysinglemoleculeforcespectroscopy
AT bernebrucej diversityofchemicalmechanismsinthioredoxincatalysisrevealedbysinglemoleculeforcespectroscopy
AT fernandezjuliom diversityofchemicalmechanismsinthioredoxincatalysisrevealedbysinglemoleculeforcespectroscopy