Cargando…

Gli1 maintains cell survival by up-regulating IGFBP6 and Bcl-2 through promoter regions in parallel manner in pancreatic cancer cells

BACKGROUND: Aberrant activation of Hedgehog (Hh) signaling pathway has been reported to be related to malignant biological behavior of pancreatic cancer but its mechanism is unclear yet. Since IGF pathway and Bcl-2 family are involved in proliferation and apoptosis of pancreatic cancer cells, we hyp...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Xuan-Fu, Guo, Chuan-Yong, Liu, Jun, Yang, Wen-Juan, Xia, Yu-Jing, Xu, Ling, Yu, Yong-Chun, Wang, Xing-Peng
Formato: Texto
Lenguaje:English
Publicado: Medknow Publications 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746911/
https://www.ncbi.nlm.nih.gov/pubmed/19736394
http://dx.doi.org/10.4103/1477-3163.55429
Descripción
Sumario:BACKGROUND: Aberrant activation of Hedgehog (Hh) signaling pathway has been reported to be related to malignant biological behavior of pancreatic cancer but its mechanism is unclear yet. Since IGF pathway and Bcl-2 family are involved in proliferation and apoptosis of pancreatic cancer cells, we hypothesize that they are possibly associated with Hh pathway. MATERIALS AND METHODS: We studied the relationship of Shh-Gli1 signaling pathway with proliferation and apoptosis of pancreatic cancer cells and the regulation of transcription factor Gli1 to insulin-like growth factor binding protein 6 (IGFBP6) and Bcl-2 genes at the level of transcription. RESULTS: Sonic hedgehog (Shh), Smoothened (Smo), patched and Gli1 were expressed in pancreatic cancer cells. Cyclopamine inhibited cell proliferation at low concentration and induced apoptosis at high concentration. Effect of RNA interference (RNAi) for Gli1 to cell survival is mainly due to proliferation inhibition though involved in apoptosis. The transcription factor Gli1 bound to promoter regions of Bcl-2 and IGFBP6 genes and the levels of IGFBP6, proliferating cell nuclear antigen (PCNA) and Bcl-2 messenger RNA (mRNA) were decreased as well as Gli1 mRNA significantly by cyclopamine or RNAi in cultured pancreatic cancer cells (p < 0.01). Finally PCNA, IGFBP6 and Bcl-2 mRNA were upregulated as well as Shh or Gli1 in pancreatic cancer tissues (p < 0.01). CONCLUSIONS: Our study reveals that Gli1 maintained cell survival by binding the promoter regions and facilitating transcription of IGFBP6 and Bcl-2 genes in a parallel manner in pancreatic cancer cells and suggests it may be one of the mechanisms of Shh-Gli1 signaling pathway in pancreatic cancer.