Cargando…
Reactions of Cre with Methylphosphonate DNA: Similarities and Contrasts with Flp and Vaccinia Topoisomerase
BACKGROUND: Reactions of vaccinia topoisomerase and the tyrosine site-specific recombinase Flp with methylphosphonate (MeP) substituted DNA substrates, have provided important insights into the electrostatic features of the strand cleavage and strand joining steps catalyzed by them. A conserved argi...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2747268/ https://www.ncbi.nlm.nih.gov/pubmed/19789629 http://dx.doi.org/10.1371/journal.pone.0007248 |
_version_ | 1782172074484170752 |
---|---|
author | Ma, Chien-Hui Kachroo, Aashiq H. Macieszak, Anna Chen, Tzu-Yang Guga, Piotr Jayaram, Makkuni |
author_facet | Ma, Chien-Hui Kachroo, Aashiq H. Macieszak, Anna Chen, Tzu-Yang Guga, Piotr Jayaram, Makkuni |
author_sort | Ma, Chien-Hui |
collection | PubMed |
description | BACKGROUND: Reactions of vaccinia topoisomerase and the tyrosine site-specific recombinase Flp with methylphosphonate (MeP) substituted DNA substrates, have provided important insights into the electrostatic features of the strand cleavage and strand joining steps catalyzed by them. A conserved arginine residue in the catalytic pentad, Arg-223 in topoisomerase and Arg-308 in Flp, is not essential for stabilizing the MeP transition state. Topoisomerase or its R223A variant promotes cleavage of the MeP bond by the active site nucleophile Tyr-274, followed by the rapid hydrolysis of the MeP-tyrosyl intermediate. Flp(R308A), but not wild type Flp, mediates direct hydrolysis of the activated MeP bond. These findings are consistent with a potential role for phosphate electrostatics and active site electrostatics in protecting DNA relaxation and site-specific recombination, respectively, against abortive hydrolysis. METHODOLOGY/PRINCIPAL FINDINGS: We have examined the effects of DNA containing MeP substitution in the Flp related Cre recombination system. Neutralizing the negative charge at the scissile position does not render the tyrosyl intermediate formed by Cre susceptible to rapid hydrolysis. Furthermore, combining the active site R292A mutation in Cre (equivalent to the R223A and R308A mutations in topoisomerase and Flp, respectively) with MeP substitution does not lead to direct hydrolysis of the scissile MeP bond in DNA. Whereas Cre follows the topoisomerase paradigm during the strand cleavage step, it follows the Flp paradigm during the strand joining step. CONCLUSIONS/SIGNIFICANCE: Collectively, the Cre, Flp and topoisomerase results highlight the contribution of conserved electrostatic complementarity between substrate and active site towards transition state stabilization during site-specific recombination and DNA relaxation. They have potential implications for how transesterification reactions in nucleic acids are protected against undesirable abortive side reactions. Such protective mechanisms are significant, given the very real threat of hydrolytic genome damage or disruption of RNA processing due to the cellular abundance and nucleophilicity of water. |
format | Text |
id | pubmed-2747268 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-27472682009-09-30 Reactions of Cre with Methylphosphonate DNA: Similarities and Contrasts with Flp and Vaccinia Topoisomerase Ma, Chien-Hui Kachroo, Aashiq H. Macieszak, Anna Chen, Tzu-Yang Guga, Piotr Jayaram, Makkuni PLoS One Research Article BACKGROUND: Reactions of vaccinia topoisomerase and the tyrosine site-specific recombinase Flp with methylphosphonate (MeP) substituted DNA substrates, have provided important insights into the electrostatic features of the strand cleavage and strand joining steps catalyzed by them. A conserved arginine residue in the catalytic pentad, Arg-223 in topoisomerase and Arg-308 in Flp, is not essential for stabilizing the MeP transition state. Topoisomerase or its R223A variant promotes cleavage of the MeP bond by the active site nucleophile Tyr-274, followed by the rapid hydrolysis of the MeP-tyrosyl intermediate. Flp(R308A), but not wild type Flp, mediates direct hydrolysis of the activated MeP bond. These findings are consistent with a potential role for phosphate electrostatics and active site electrostatics in protecting DNA relaxation and site-specific recombination, respectively, against abortive hydrolysis. METHODOLOGY/PRINCIPAL FINDINGS: We have examined the effects of DNA containing MeP substitution in the Flp related Cre recombination system. Neutralizing the negative charge at the scissile position does not render the tyrosyl intermediate formed by Cre susceptible to rapid hydrolysis. Furthermore, combining the active site R292A mutation in Cre (equivalent to the R223A and R308A mutations in topoisomerase and Flp, respectively) with MeP substitution does not lead to direct hydrolysis of the scissile MeP bond in DNA. Whereas Cre follows the topoisomerase paradigm during the strand cleavage step, it follows the Flp paradigm during the strand joining step. CONCLUSIONS/SIGNIFICANCE: Collectively, the Cre, Flp and topoisomerase results highlight the contribution of conserved electrostatic complementarity between substrate and active site towards transition state stabilization during site-specific recombination and DNA relaxation. They have potential implications for how transesterification reactions in nucleic acids are protected against undesirable abortive side reactions. Such protective mechanisms are significant, given the very real threat of hydrolytic genome damage or disruption of RNA processing due to the cellular abundance and nucleophilicity of water. Public Library of Science 2009-09-30 /pmc/articles/PMC2747268/ /pubmed/19789629 http://dx.doi.org/10.1371/journal.pone.0007248 Text en Ma et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Ma, Chien-Hui Kachroo, Aashiq H. Macieszak, Anna Chen, Tzu-Yang Guga, Piotr Jayaram, Makkuni Reactions of Cre with Methylphosphonate DNA: Similarities and Contrasts with Flp and Vaccinia Topoisomerase |
title | Reactions of Cre with Methylphosphonate DNA: Similarities and Contrasts with Flp and Vaccinia Topoisomerase |
title_full | Reactions of Cre with Methylphosphonate DNA: Similarities and Contrasts with Flp and Vaccinia Topoisomerase |
title_fullStr | Reactions of Cre with Methylphosphonate DNA: Similarities and Contrasts with Flp and Vaccinia Topoisomerase |
title_full_unstemmed | Reactions of Cre with Methylphosphonate DNA: Similarities and Contrasts with Flp and Vaccinia Topoisomerase |
title_short | Reactions of Cre with Methylphosphonate DNA: Similarities and Contrasts with Flp and Vaccinia Topoisomerase |
title_sort | reactions of cre with methylphosphonate dna: similarities and contrasts with flp and vaccinia topoisomerase |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2747268/ https://www.ncbi.nlm.nih.gov/pubmed/19789629 http://dx.doi.org/10.1371/journal.pone.0007248 |
work_keys_str_mv | AT machienhui reactionsofcrewithmethylphosphonatednasimilaritiesandcontrastswithflpandvacciniatopoisomerase AT kachrooaashiqh reactionsofcrewithmethylphosphonatednasimilaritiesandcontrastswithflpandvacciniatopoisomerase AT macieszakanna reactionsofcrewithmethylphosphonatednasimilaritiesandcontrastswithflpandvacciniatopoisomerase AT chentzuyang reactionsofcrewithmethylphosphonatednasimilaritiesandcontrastswithflpandvacciniatopoisomerase AT gugapiotr reactionsofcrewithmethylphosphonatednasimilaritiesandcontrastswithflpandvacciniatopoisomerase AT jayarammakkuni reactionsofcrewithmethylphosphonatednasimilaritiesandcontrastswithflpandvacciniatopoisomerase |