Cargando…

Downregulation of protease activated receptor expression and cytokine production in P815 cells by RNA interference

BACKGROUND: Protease-activated receptors (PAR) are seven transmembrane G-coupled receptors comprising four genes (PAR-1 ~ PAR-4). Mast cell has been identified to be able to express PARs and release an array of cytokines upon activation. Recently, it was reported that interleukin (IL)-12 could regul...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiao, Liya, Zhang, Huiyun, Wu, Shandong, He, Shaoheng
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2751739/
https://www.ncbi.nlm.nih.gov/pubmed/19732468
http://dx.doi.org/10.1186/1471-2121-10-62
Descripción
Sumario:BACKGROUND: Protease-activated receptors (PAR) are seven transmembrane G-coupled receptors comprising four genes (PAR-1 ~ PAR-4). Mast cell has been identified to be able to express PARs and release an array of cytokines upon activation. Recently, it was reported that interleukin (IL)-12 could regulate the expression of PARs in mast cells, and tryptase could induce IL-4 and IL-6 release from mast cells. In order to further investigate the issues, RNA interference (RNAi) technique was employed and small interfering RNAs (siRNA) of PARs were transfected in P815 cells. RESULTS: The results showed that siRNAs for PAR-1, PAR-2 and PAR-4 significantly downregulated expression of PAR-1, PAR-2 and PAR-4 mRNAs and proteins in P815 cells at 24, 48 and 72 h following transfection. siRNA PAR-1.2 and siRNA PAR-4.2 significantly reduced IL-12 induced upregulation of PAR-1 and PAR-4 expression, respectively when P815 cells were transfected with them for 48 h. siRNA PAR-2.3 blocked IL-12 induced downregulation of PAR-2 expression on both mRNA and protein levels. It was also observed that siRNA PAR-2.3 and siRNA PAR-1.2 reduced trypsin induced IL-4 release by approximately 92.6% and 65.3%, and SLIGKV-NH(2 )induced IL-4 release by 82.1% and 60.1%, respectively. Similarly, siRNA PAR-2.3 eliminated tryptase-induced IL-4 release by 75.3%, and siRNA PAR-1.2 diminished SFLLR-NH(2 )induced IL-4 release by 79.3%. However, siRNA PAR-1.2, siRNA PAR-2.3 and siRNA PAR-4.3 at 10 nM did not show any effect on tryptase-induced IL-6 release from P815 cells. CONCLUSION: In conclusion, siRNAs of PARs can modulate PAR expression and PAR related cytokine production in mast cells, confirming that PARs are likely to play a role in allergic reactions.