Cargando…

C-terminal domain of SARS-CoV main protease can form a 3D domain-swapped dimer

SARS coronavirus main protease (M(pro)) plays an essential role in the extensive proteolytic processing of the viral polyproteins (pp1a and pp1ab), and it is an important target for anti-SARS drug development. We have reported that both the M(pro) C-terminal domain alone (M(pro)-C) and the N-finger...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhong, Nan, Zhang, Shengnan, Xue, Fei, Kang, Xue, Zou, Peng, Chen, Jiaxuan, Liang, Chao, Rao, Zihe, Jin, Changwen, Lou, Zhiyong, Xia, Bin
Formato: Texto
Lenguaje:English
Publicado: Wiley Subscription Services, Inc., A Wiley Company 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762595/
https://www.ncbi.nlm.nih.gov/pubmed/19319935
http://dx.doi.org/10.1002/pro.76
Descripción
Sumario:SARS coronavirus main protease (M(pro)) plays an essential role in the extensive proteolytic processing of the viral polyproteins (pp1a and pp1ab), and it is an important target for anti-SARS drug development. We have reported that both the M(pro) C-terminal domain alone (M(pro)-C) and the N-finger deletion mutant of M(pro) (M(pro)-Δ7) exist as a stable dimer and a stable monomer (Zhong et al., J Virol 2008; 82:4227-4234). Here, we report structures of both M(pro)-C monomer and dimer. The structure of the M(pro)-C monomer is almost identical to that of the C-terminal domain in the crystal structure of M(pro). Interestingly, the M(pro)-C dimer structure is characterized by 3D domain-swapping, in which the first helices of the two protomers are interchanged and each is enwrapped by four other helices from the other protomer. Each folding subunit of the M(pro)-C domain-swapped dimer still has the same general fold as that of the M(pro)-C monomer. This special dimerization elucidates the structural basis for the observation that there is no exchange between monomeric and dimeric forms of M(pro)-C and M(pro)-Δ7.