Cargando…
Action potential clamp and chloroquine sensitivity of mutant Kir2.1 channels responsible for variant 3 short QT syndrome
Recently identified genetic forms of short QT syndrome (SQTS) are associated with an increased risk of arrhythmia and sudden death. The SQT3 variant is associated with an amino-acid substitution (D172N) in the KCNJ2-encoded Kir2.1 K(+) channel. In this study, whole-cell action potential (AP) clamp r...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765655/ https://www.ncbi.nlm.nih.gov/pubmed/19285083 http://dx.doi.org/10.1016/j.yjmcc.2009.02.027 |
_version_ | 1782173166061223936 |
---|---|
author | El Harchi, Aziza McPate, Mark J. Zhang, Yi hong Zhang, Henggui Hancox, Jules C. |
author_facet | El Harchi, Aziza McPate, Mark J. Zhang, Yi hong Zhang, Henggui Hancox, Jules C. |
author_sort | El Harchi, Aziza |
collection | PubMed |
description | Recently identified genetic forms of short QT syndrome (SQTS) are associated with an increased risk of arrhythmia and sudden death. The SQT3 variant is associated with an amino-acid substitution (D172N) in the KCNJ2-encoded Kir2.1 K(+) channel. In this study, whole-cell action potential (AP) clamp recording from transiently transfected Chinese Hamster Ovary cells at 37 °C showed marked augmentation of outward Kir2.1 current through D172N channels, associated with right-ward voltage-shifts of peak repolarizing current during both ventricular and atrial AP commands. Peak outward current elicited by ventricular AP commands was inhibited by chloroquine with an IC(50) of 2.45 μM for wild-type (WT) Kir2.1, of 3.30 μM for D172N-Kir2.1 alone and of 3.11 μM for co-expressed WT and D172N (P > 0.05 for all). These findings establish chloroquine as an effective inhibitor of SQT3 mutant Kir2.1 channels. |
format | Text |
id | pubmed-2765655 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Academic Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-27656552009-10-23 Action potential clamp and chloroquine sensitivity of mutant Kir2.1 channels responsible for variant 3 short QT syndrome El Harchi, Aziza McPate, Mark J. Zhang, Yi hong Zhang, Henggui Hancox, Jules C. J Mol Cell Cardiol Rapid Communication Recently identified genetic forms of short QT syndrome (SQTS) are associated with an increased risk of arrhythmia and sudden death. The SQT3 variant is associated with an amino-acid substitution (D172N) in the KCNJ2-encoded Kir2.1 K(+) channel. In this study, whole-cell action potential (AP) clamp recording from transiently transfected Chinese Hamster Ovary cells at 37 °C showed marked augmentation of outward Kir2.1 current through D172N channels, associated with right-ward voltage-shifts of peak repolarizing current during both ventricular and atrial AP commands. Peak outward current elicited by ventricular AP commands was inhibited by chloroquine with an IC(50) of 2.45 μM for wild-type (WT) Kir2.1, of 3.30 μM for D172N-Kir2.1 alone and of 3.11 μM for co-expressed WT and D172N (P > 0.05 for all). These findings establish chloroquine as an effective inhibitor of SQT3 mutant Kir2.1 channels. Academic Press 2009-11 /pmc/articles/PMC2765655/ /pubmed/19285083 http://dx.doi.org/10.1016/j.yjmcc.2009.02.027 Text en © 2009 Elsevier Ltd. https://creativecommons.org/licenses/by-nc-nd/3.0/ Open Access under CC BY-NC-ND 3.0 (https://creativecommons.org/licenses/by-nc-nd/3.0/) license |
spellingShingle | Rapid Communication El Harchi, Aziza McPate, Mark J. Zhang, Yi hong Zhang, Henggui Hancox, Jules C. Action potential clamp and chloroquine sensitivity of mutant Kir2.1 channels responsible for variant 3 short QT syndrome |
title | Action potential clamp and chloroquine sensitivity of mutant Kir2.1 channels responsible for variant 3 short QT syndrome |
title_full | Action potential clamp and chloroquine sensitivity of mutant Kir2.1 channels responsible for variant 3 short QT syndrome |
title_fullStr | Action potential clamp and chloroquine sensitivity of mutant Kir2.1 channels responsible for variant 3 short QT syndrome |
title_full_unstemmed | Action potential clamp and chloroquine sensitivity of mutant Kir2.1 channels responsible for variant 3 short QT syndrome |
title_short | Action potential clamp and chloroquine sensitivity of mutant Kir2.1 channels responsible for variant 3 short QT syndrome |
title_sort | action potential clamp and chloroquine sensitivity of mutant kir2.1 channels responsible for variant 3 short qt syndrome |
topic | Rapid Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765655/ https://www.ncbi.nlm.nih.gov/pubmed/19285083 http://dx.doi.org/10.1016/j.yjmcc.2009.02.027 |
work_keys_str_mv | AT elharchiaziza actionpotentialclampandchloroquinesensitivityofmutantkir21channelsresponsibleforvariant3shortqtsyndrome AT mcpatemarkj actionpotentialclampandchloroquinesensitivityofmutantkir21channelsresponsibleforvariant3shortqtsyndrome AT zhangyihong actionpotentialclampandchloroquinesensitivityofmutantkir21channelsresponsibleforvariant3shortqtsyndrome AT zhanghenggui actionpotentialclampandchloroquinesensitivityofmutantkir21channelsresponsibleforvariant3shortqtsyndrome AT hancoxjulesc actionpotentialclampandchloroquinesensitivityofmutantkir21channelsresponsibleforvariant3shortqtsyndrome |