Cargando…
C. elegans as Model for the Study of High Glucose– Mediated Life Span Reduction
OBJECTIVE: Establishing Caenorhabditis elegans as a model for glucose toxicity–mediated life span reduction. RESEARCH DESIGN AND METHODS: C. elegans were maintained to achieve glucose concentrations resembling the hyperglycemic conditions in diabetic patients. The effects of high glucose on life spa...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2768179/ https://www.ncbi.nlm.nih.gov/pubmed/19675139 http://dx.doi.org/10.2337/db09-0567 |
Sumario: | OBJECTIVE: Establishing Caenorhabditis elegans as a model for glucose toxicity–mediated life span reduction. RESEARCH DESIGN AND METHODS: C. elegans were maintained to achieve glucose concentrations resembling the hyperglycemic conditions in diabetic patients. The effects of high glucose on life span, glyoxalase-1 activity, advanced glycation end products (AGEs), and reactive oxygen species (ROS) formation and on mitochondrial function were studied. RESULTS: High glucose conditions reduced mean life span from 18.5 ± 0.4 to 16.5 ± 0.6 days and maximum life span from 25.9 ± 0.4 to 23.2 ± 0.4 days, independent of glucose effects on cuticle or bacterial metabolization of glucose. The formation of methylglyoxal-modified mitochondrial proteins and ROS was significantly increased by high glucose conditions and reduced by mitochondrial uncoupling and complex IIIQo inhibition. Overexpression of the methylglyoxal–detoxifying enzyme glyoxalase-1 attenuated the life-shortening effect of glucose by reducing AGE accumulation (by 65%) and ROS formation (by 50%) and restored mean (16.5 ± 0.6 to 20.6 ± 0.4 days) and maximum life span (23.2 ± 0.4 to 27.7 ± 2.3 days). In contrast, inhibition of glyoxalase-1 by RNAi further reduced mean (16.5 ± 0.6 to 13.9 ± 0.7 days) and maximum life span (23.2 ± 0.4 to 20.3 ± 1.1 days). The life span reduction by glyoxalase-1 inhibition was independent from the insulin signaling pathway because high glucose conditions also affected daf-2 knockdown animals in a similar manner. CONCLUSIONS: C. elegans is a suitable model organism to study glucose toxicity, in which high glucose conditions limit the life span by increasing ROS formation and AGE modification of mitochondrial proteins in a daf-2 independent manner. Most importantly, glucose toxicity can be prevented by improving glyoxalase-1–dependent methylglyoxal detoxification or preventing mitochondrial dysfunction. |
---|