Cargando…
Deterministic Effects Propagation Networks for reconstructing protein signaling networks from multiple interventions
BACKGROUND: Modern gene perturbation techniques, like RNA interference (RNAi), enable us to study effects of targeted interventions in cells efficiently. In combination with mRNA or protein expression data this allows to gain insights into the behavior of complex biological systems. RESULTS: In this...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2770070/ https://www.ncbi.nlm.nih.gov/pubmed/19814779 http://dx.doi.org/10.1186/1471-2105-10-322 |
_version_ | 1782173624608751616 |
---|---|
author | Fröhlich, Holger Sahin, Özgür Arlt, Dorit Bender, Christian Beißbarth, Tim |
author_facet | Fröhlich, Holger Sahin, Özgür Arlt, Dorit Bender, Christian Beißbarth, Tim |
author_sort | Fröhlich, Holger |
collection | PubMed |
description | BACKGROUND: Modern gene perturbation techniques, like RNA interference (RNAi), enable us to study effects of targeted interventions in cells efficiently. In combination with mRNA or protein expression data this allows to gain insights into the behavior of complex biological systems. RESULTS: In this paper, we propose Deterministic Effects Propagation Networks (DEPNs) as a special Bayesian Network approach to reverse engineer signaling networks from a combination of protein expression and perturbation data. DEPNs allow to reconstruct protein networks based on combinatorial intervention effects, which are monitored via changes of the protein expression or activation over one or a few time points. Our implementation of DEPNs allows for latent network nodes (i.e. proteins without measurements) and has a built in mechanism to impute missing data. The robustness of our approach was tested on simulated data. We applied DEPNs to reconstruct the ERBB signaling network in de novo trastuzumab resistant human breast cancer cells, where protein expression was monitored on Reverse Phase Protein Arrays (RPPAs) after knockdown of network proteins using RNAi. CONCLUSION: DEPNs offer a robust, efficient and simple approach to infer protein signaling networks from multiple interventions. The method as well as the data have been made part of the latest version of the R package "nem" available as a supplement to this paper and via the Bioconductor repository. |
format | Text |
id | pubmed-2770070 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-27700702009-10-29 Deterministic Effects Propagation Networks for reconstructing protein signaling networks from multiple interventions Fröhlich, Holger Sahin, Özgür Arlt, Dorit Bender, Christian Beißbarth, Tim BMC Bioinformatics Research Article BACKGROUND: Modern gene perturbation techniques, like RNA interference (RNAi), enable us to study effects of targeted interventions in cells efficiently. In combination with mRNA or protein expression data this allows to gain insights into the behavior of complex biological systems. RESULTS: In this paper, we propose Deterministic Effects Propagation Networks (DEPNs) as a special Bayesian Network approach to reverse engineer signaling networks from a combination of protein expression and perturbation data. DEPNs allow to reconstruct protein networks based on combinatorial intervention effects, which are monitored via changes of the protein expression or activation over one or a few time points. Our implementation of DEPNs allows for latent network nodes (i.e. proteins without measurements) and has a built in mechanism to impute missing data. The robustness of our approach was tested on simulated data. We applied DEPNs to reconstruct the ERBB signaling network in de novo trastuzumab resistant human breast cancer cells, where protein expression was monitored on Reverse Phase Protein Arrays (RPPAs) after knockdown of network proteins using RNAi. CONCLUSION: DEPNs offer a robust, efficient and simple approach to infer protein signaling networks from multiple interventions. The method as well as the data have been made part of the latest version of the R package "nem" available as a supplement to this paper and via the Bioconductor repository. BioMed Central 2009-10-08 /pmc/articles/PMC2770070/ /pubmed/19814779 http://dx.doi.org/10.1186/1471-2105-10-322 Text en Copyright © 2009 Fröhlich et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Fröhlich, Holger Sahin, Özgür Arlt, Dorit Bender, Christian Beißbarth, Tim Deterministic Effects Propagation Networks for reconstructing protein signaling networks from multiple interventions |
title | Deterministic Effects Propagation Networks for reconstructing protein signaling networks from multiple interventions |
title_full | Deterministic Effects Propagation Networks for reconstructing protein signaling networks from multiple interventions |
title_fullStr | Deterministic Effects Propagation Networks for reconstructing protein signaling networks from multiple interventions |
title_full_unstemmed | Deterministic Effects Propagation Networks for reconstructing protein signaling networks from multiple interventions |
title_short | Deterministic Effects Propagation Networks for reconstructing protein signaling networks from multiple interventions |
title_sort | deterministic effects propagation networks for reconstructing protein signaling networks from multiple interventions |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2770070/ https://www.ncbi.nlm.nih.gov/pubmed/19814779 http://dx.doi.org/10.1186/1471-2105-10-322 |
work_keys_str_mv | AT frohlichholger deterministiceffectspropagationnetworksforreconstructingproteinsignalingnetworksfrommultipleinterventions AT sahinozgur deterministiceffectspropagationnetworksforreconstructingproteinsignalingnetworksfrommultipleinterventions AT arltdorit deterministiceffectspropagationnetworksforreconstructingproteinsignalingnetworksfrommultipleinterventions AT benderchristian deterministiceffectspropagationnetworksforreconstructingproteinsignalingnetworksfrommultipleinterventions AT beißbarthtim deterministiceffectspropagationnetworksforreconstructingproteinsignalingnetworksfrommultipleinterventions |