Cargando…
Substrate specificity of microbial transglutaminase as revealed by three-dimensional docking simulation and mutagenesis
Transglutaminases (TGases) are used in fields such as food and pharmaceuticals. Unlike other TGases, microbial transglutaminase (MTG) activity is Ca(2+)-independent, broadening its application. Here, a three-dimensional docking model of MTG binding to a peptide substrate, CBZ-Gln-Gly, was simulated....
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777024/ https://www.ncbi.nlm.nih.gov/pubmed/19850674 http://dx.doi.org/10.1093/protein/gzp061 |
Sumario: | Transglutaminases (TGases) are used in fields such as food and pharmaceuticals. Unlike other TGases, microbial transglutaminase (MTG) activity is Ca(2+)-independent, broadening its application. Here, a three-dimensional docking model of MTG binding to a peptide substrate, CBZ-Gln-Gly, was simulated. The data reveal CBZ-Gln-Gly to be stretched along the MTG active site cleft with hydrophobic and/or aromatic residues interacting directly with the substrate. Moreover, an oxyanion binding site for TGase activity may be constructed from the amide groups of Cys64 and/or Val65. Alanine mutagenesis verified the simulated binding region and indicated that large molecules can be widely recognized on the MTG cleft. |
---|