Cargando…

Sensation and Signaling of α-Ketoglutarate and Adenylylate Energy Charge by the Escherichia coli PII Signal Transduction Protein Require Cooperation of the Three Ligand-Binding Sites within the PII Trimer

[Image: see text] PII proteins are sensors of α-ketoglutarate and adenylylate energy charge that regulate signal transduction proteins, metabolic enzymes, and permeases involved in nitrogen assimilation. Here, purified Escherichia coli PII and two of its receptors, ATase and NRII, were used to study...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Peng, Ninfa, Alexander J.
Formato: Texto
Lenguaje:English
Publicado: American Chemical Society 2009
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786245/
https://www.ncbi.nlm.nih.gov/pubmed/19877670
http://dx.doi.org/10.1021/bi9011594
_version_ 1782174875822063616
author Jiang, Peng
Ninfa, Alexander J.
author_facet Jiang, Peng
Ninfa, Alexander J.
author_sort Jiang, Peng
collection PubMed
description [Image: see text] PII proteins are sensors of α-ketoglutarate and adenylylate energy charge that regulate signal transduction proteins, metabolic enzymes, and permeases involved in nitrogen assimilation. Here, purified Escherichia coli PII and two of its receptors, ATase and NRII, were used to study the mechanisms of sensation by PII. We assembled heterotrimeric forms of PII from wild-type and mutant subunits, which allowed us to assess the role of the three binding sites for α-ketoglutarate and adenylylate nucleotide in the PII trimer. Signaling of α-ketoglutarate and adenylylate energy charge by these heterotrimeric PII proteins required multiple binding sites for these effectors, and the ligand-binding sites on different subunits could influence the function of a single subunit interacting with a receptor, implying communication between PII subunits. Wild-type and heterotrimeric forms of PII were also used to examine the effects of α-ketoglutarate and ADP on PII activation of the adenylyltransferase (AT) activity of ATase. Previous work showed that when ATP was the sole adenylylate nucleotide, α-ketoglutarate controlled the extent of PII activation but did not alter the PII activation constant (K(act)). We show that ADP affected both the PII K(act) and the extent of activation by PII. When ATP was present, ADP dramatically reduced the K(act) for wild-type PII, and this effect was antagonized by α-ketoglutarate. Consequently, when ATP was present, the antagonism between ADP and α-ketoglutarate allowed each of these effectors to influence the PII K(act) for activation of ATase. A study of heterotrimeric forms of PII suggested that the major part of the ability of ADP to improve the binding of PII to ATase required multiple nucleotide binding sites and intersubunit communication. We also used nondenaturing gel electrophoresis to investigate the effect of ADP and α-ketoglutarate on the binding of PII to ATase and NRII. These studies showed that ATase and NRII differ in their requirements for interaction with PII, and that under the appropriate conditions, the antagonism between α-ketoglutarate and ADP allowed each of these effectors to influence the binding of PII to receptors.
format Text
id pubmed-2786245
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-27862452009-12-02 Sensation and Signaling of α-Ketoglutarate and Adenylylate Energy Charge by the Escherichia coli PII Signal Transduction Protein Require Cooperation of the Three Ligand-Binding Sites within the PII Trimer Jiang, Peng Ninfa, Alexander J. Biochemistry [Image: see text] PII proteins are sensors of α-ketoglutarate and adenylylate energy charge that regulate signal transduction proteins, metabolic enzymes, and permeases involved in nitrogen assimilation. Here, purified Escherichia coli PII and two of its receptors, ATase and NRII, were used to study the mechanisms of sensation by PII. We assembled heterotrimeric forms of PII from wild-type and mutant subunits, which allowed us to assess the role of the three binding sites for α-ketoglutarate and adenylylate nucleotide in the PII trimer. Signaling of α-ketoglutarate and adenylylate energy charge by these heterotrimeric PII proteins required multiple binding sites for these effectors, and the ligand-binding sites on different subunits could influence the function of a single subunit interacting with a receptor, implying communication between PII subunits. Wild-type and heterotrimeric forms of PII were also used to examine the effects of α-ketoglutarate and ADP on PII activation of the adenylyltransferase (AT) activity of ATase. Previous work showed that when ATP was the sole adenylylate nucleotide, α-ketoglutarate controlled the extent of PII activation but did not alter the PII activation constant (K(act)). We show that ADP affected both the PII K(act) and the extent of activation by PII. When ATP was present, ADP dramatically reduced the K(act) for wild-type PII, and this effect was antagonized by α-ketoglutarate. Consequently, when ATP was present, the antagonism between ADP and α-ketoglutarate allowed each of these effectors to influence the PII K(act) for activation of ATase. A study of heterotrimeric forms of PII suggested that the major part of the ability of ADP to improve the binding of PII to ATase required multiple nucleotide binding sites and intersubunit communication. We also used nondenaturing gel electrophoresis to investigate the effect of ADP and α-ketoglutarate on the binding of PII to ATase and NRII. These studies showed that ATase and NRII differ in their requirements for interaction with PII, and that under the appropriate conditions, the antagonism between α-ketoglutarate and ADP allowed each of these effectors to influence the binding of PII to receptors. American Chemical Society 2009-10-30 2009-12-08 /pmc/articles/PMC2786245/ /pubmed/19877670 http://dx.doi.org/10.1021/bi9011594 Text en Copyright © 2009 American Chemical Society http://pubs.acs.org This is an open-access article distributed under the ACS AuthorChoice Terms & Conditions. Any use of this article, must conform to the terms of that license which are available at http://pubs.acs.org.
spellingShingle Jiang, Peng
Ninfa, Alexander J.
Sensation and Signaling of α-Ketoglutarate and Adenylylate Energy Charge by the Escherichia coli PII Signal Transduction Protein Require Cooperation of the Three Ligand-Binding Sites within the PII Trimer
title Sensation and Signaling of α-Ketoglutarate and Adenylylate Energy Charge by the Escherichia coli PII Signal Transduction Protein Require Cooperation of the Three Ligand-Binding Sites within the PII Trimer
title_full Sensation and Signaling of α-Ketoglutarate and Adenylylate Energy Charge by the Escherichia coli PII Signal Transduction Protein Require Cooperation of the Three Ligand-Binding Sites within the PII Trimer
title_fullStr Sensation and Signaling of α-Ketoglutarate and Adenylylate Energy Charge by the Escherichia coli PII Signal Transduction Protein Require Cooperation of the Three Ligand-Binding Sites within the PII Trimer
title_full_unstemmed Sensation and Signaling of α-Ketoglutarate and Adenylylate Energy Charge by the Escherichia coli PII Signal Transduction Protein Require Cooperation of the Three Ligand-Binding Sites within the PII Trimer
title_short Sensation and Signaling of α-Ketoglutarate and Adenylylate Energy Charge by the Escherichia coli PII Signal Transduction Protein Require Cooperation of the Three Ligand-Binding Sites within the PII Trimer
title_sort sensation and signaling of α-ketoglutarate and adenylylate energy charge by the escherichia coli pii signal transduction protein require cooperation of the three ligand-binding sites within the pii trimer
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786245/
https://www.ncbi.nlm.nih.gov/pubmed/19877670
http://dx.doi.org/10.1021/bi9011594
work_keys_str_mv AT jiangpeng sensationandsignalingofaketoglutarateandadenylylateenergychargebytheescherichiacolipiisignaltransductionproteinrequirecooperationofthethreeligandbindingsiteswithinthepiitrimer
AT ninfaalexanderj sensationandsignalingofaketoglutarateandadenylylateenergychargebytheescherichiacolipiisignaltransductionproteinrequirecooperationofthethreeligandbindingsiteswithinthepiitrimer