Cargando…

Mutant Fibroblast Growth Factor Receptor 3 Induces Intracellular Signaling and Cellular Transformation in a Cell Type- and Mutation-Specific Manner

Although activating mutations of FGFR3 are frequent in bladder tumors, little information is available on their specific effects in urothelial cells or the basis for the observed mutation spectrum. We investigated the phenotypic and signaling consequences of three FGFR3 mutations (S249C, Y375C, and...

Descripción completa

Detalles Bibliográficos
Autores principales: di Martino, E, L'Hôte, CG, Kennedy, W, Tomlinson, DC, Knowles, MA
Formato: Texto
Lenguaje:English
Publicado: 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789045/
https://www.ncbi.nlm.nih.gov/pubmed/19749790
http://dx.doi.org/10.1038/onc.2009.280
_version_ 1782175020429082624
author di Martino, E
L'Hôte, CG
Kennedy, W
Tomlinson, DC
Knowles, MA
author_facet di Martino, E
L'Hôte, CG
Kennedy, W
Tomlinson, DC
Knowles, MA
author_sort di Martino, E
collection PubMed
description Although activating mutations of FGFR3 are frequent in bladder tumors, little information is available on their specific effects in urothelial cells or the basis for the observed mutation spectrum. We investigated the phenotypic and signaling consequences of three FGFR3 mutations (S249C, Y375C, and K652E) in immortalized normal human urothelial cells (TERT-NHUC) and mouse fibroblasts (NIH-3T3). In TERT-NHUC, all mutant forms of FGFR3 induced phosphorylation of FRS2α and ERK1/2, but not AKT or SRC. PLCγ1 phosphorylation was only observed in TERT-NHUC expressing the common S249C and Y375C mutations, and not the rare K652E mutation. Cells expressing S249C and Y375C FGFR3 displayed an increased saturation density, related to increased proliferation and viability. This effect was significantly dependent on PLCγ1 signaling and undetectable in cells expressing K652E FGFR3, which failed to phosphorylate PLCγ1. In contrast to TERT-NHUC, expression of mutant FGFR3 in NIH-3T3 resulted in phosphorylation of Src and Akt. Additionally, all forms of mutant FGFR3 were able to phosphorylate Plcγ1 and induce morphological transformation, cell proliferation, and anchorage independent growth. Our results indicate that the effects of mutant FGFR3 are both cell type- and mutation-specific. Mutant FGFR3 may confer a selective advantage in the urothelium by overcoming normal contact inhibition of proliferation.
format Text
id pubmed-2789045
institution National Center for Biotechnology Information
language English
publishDate 2009
record_format MEDLINE/PubMed
spelling pubmed-27890452010-06-03 Mutant Fibroblast Growth Factor Receptor 3 Induces Intracellular Signaling and Cellular Transformation in a Cell Type- and Mutation-Specific Manner di Martino, E L'Hôte, CG Kennedy, W Tomlinson, DC Knowles, MA Oncogene Article Although activating mutations of FGFR3 are frequent in bladder tumors, little information is available on their specific effects in urothelial cells or the basis for the observed mutation spectrum. We investigated the phenotypic and signaling consequences of three FGFR3 mutations (S249C, Y375C, and K652E) in immortalized normal human urothelial cells (TERT-NHUC) and mouse fibroblasts (NIH-3T3). In TERT-NHUC, all mutant forms of FGFR3 induced phosphorylation of FRS2α and ERK1/2, but not AKT or SRC. PLCγ1 phosphorylation was only observed in TERT-NHUC expressing the common S249C and Y375C mutations, and not the rare K652E mutation. Cells expressing S249C and Y375C FGFR3 displayed an increased saturation density, related to increased proliferation and viability. This effect was significantly dependent on PLCγ1 signaling and undetectable in cells expressing K652E FGFR3, which failed to phosphorylate PLCγ1. In contrast to TERT-NHUC, expression of mutant FGFR3 in NIH-3T3 resulted in phosphorylation of Src and Akt. Additionally, all forms of mutant FGFR3 were able to phosphorylate Plcγ1 and induce morphological transformation, cell proliferation, and anchorage independent growth. Our results indicate that the effects of mutant FGFR3 are both cell type- and mutation-specific. Mutant FGFR3 may confer a selective advantage in the urothelium by overcoming normal contact inhibition of proliferation. 2009-09-14 2009-12-03 /pmc/articles/PMC2789045/ /pubmed/19749790 http://dx.doi.org/10.1038/onc.2009.280 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
di Martino, E
L'Hôte, CG
Kennedy, W
Tomlinson, DC
Knowles, MA
Mutant Fibroblast Growth Factor Receptor 3 Induces Intracellular Signaling and Cellular Transformation in a Cell Type- and Mutation-Specific Manner
title Mutant Fibroblast Growth Factor Receptor 3 Induces Intracellular Signaling and Cellular Transformation in a Cell Type- and Mutation-Specific Manner
title_full Mutant Fibroblast Growth Factor Receptor 3 Induces Intracellular Signaling and Cellular Transformation in a Cell Type- and Mutation-Specific Manner
title_fullStr Mutant Fibroblast Growth Factor Receptor 3 Induces Intracellular Signaling and Cellular Transformation in a Cell Type- and Mutation-Specific Manner
title_full_unstemmed Mutant Fibroblast Growth Factor Receptor 3 Induces Intracellular Signaling and Cellular Transformation in a Cell Type- and Mutation-Specific Manner
title_short Mutant Fibroblast Growth Factor Receptor 3 Induces Intracellular Signaling and Cellular Transformation in a Cell Type- and Mutation-Specific Manner
title_sort mutant fibroblast growth factor receptor 3 induces intracellular signaling and cellular transformation in a cell type- and mutation-specific manner
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789045/
https://www.ncbi.nlm.nih.gov/pubmed/19749790
http://dx.doi.org/10.1038/onc.2009.280
work_keys_str_mv AT dimartinoe mutantfibroblastgrowthfactorreceptor3inducesintracellularsignalingandcellulartransformationinacelltypeandmutationspecificmanner
AT lhotecg mutantfibroblastgrowthfactorreceptor3inducesintracellularsignalingandcellulartransformationinacelltypeandmutationspecificmanner
AT kennedyw mutantfibroblastgrowthfactorreceptor3inducesintracellularsignalingandcellulartransformationinacelltypeandmutationspecificmanner
AT tomlinsondc mutantfibroblastgrowthfactorreceptor3inducesintracellularsignalingandcellulartransformationinacelltypeandmutationspecificmanner
AT knowlesma mutantfibroblastgrowthfactorreceptor3inducesintracellularsignalingandcellulartransformationinacelltypeandmutationspecificmanner