Cargando…

The Decrease of n-3 Fatty Acid Energy Percentage in an Equicaloric Diet Fed to B6C3Fe Mice for Three Generations Elicits Obesity

Feeding mice, over 3 generations, an equicaloric diet in which α-linolenic acid, the dietary precursor of n-3 polyunsaturated fatty acids, was substituted by linoleic acid, the dietary precursor of n-6 polyunsaturated fatty acids, significantly increased body weight throughout life when compared wit...

Descripción completa

Detalles Bibliográficos
Autores principales: Hanbauer, Ingeborg, Rivero-Covelo, Ignacio, Maloku, Ekrem, Baca, Adam, Hu, Qiaoyan, Hibbeln, Joseph R., Davis, John M.
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2794476/
https://www.ncbi.nlm.nih.gov/pubmed/20029635
http://dx.doi.org/10.1155/2009/867041
Descripción
Sumario:Feeding mice, over 3 generations, an equicaloric diet in which α-linolenic acid, the dietary precursor of n-3 polyunsaturated fatty acids, was substituted by linoleic acid, the dietary precursor of n-6 polyunsaturated fatty acids, significantly increased body weight throughout life when compared with standard diet-fed mice. Adipogenesis observed in the low n-3 fatty acid mice was accompanied by a 6-fold upregulation of stearyl-coenzyme A desaturase 1 (Scd1), whose activity is correlated to plasma triglyceride levels. In total liver lipid and phospholipid extracts, the sum of n-3 fatty acids and the individual longer carbon chain acids, eicosapentaenoic acid (20:5n3), docosapentaenoic acid (22:5n3), and docosahexaenoic acid (22:6n3) were significantly decreased whereas arachidonic acid (20:4n6) was significantly increased. In addition, low n-3 fatty acid-fed mice had liver steatosis, heart, and kidney hypertrophy. Hence, reducing dietary α-linolenic acid, from 1.02 energy % to 0.16 energy % combined with raising linoleic acid intake resulted in obesity and had detrimental consequences on organ function.