Cargando…
Evaluation of single-nucleotide polymorphism imputation using random forests
Genome-wide association studies (GWAS) have helped to reveal genetic mechanisms of complex diseases. Although commonly used genotyping technology enables us to determine up to a million single-nucleotide polymorphisms (SNPs), causative variants are typically not genotyped directly. A favored approac...
Autores principales: | Schwarz, Daniel F, Szymczak, Silke, Ziegler, Andreas, König, Inke R |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2795966/ https://www.ncbi.nlm.nih.gov/pubmed/20018059 |
Ejemplares similares
-
Picking single-nucleotide polymorphisms in forests
por: Schwarz, Daniel F, et al.
Publicado: (2007) -
ACPA: automated cluster plot analysis of genotype data
por: Schillert, Arne, et al.
Publicado: (2009) -
Detecting significant single-nucleotide polymorphisms in a rheumatoid arthritis study using random forests
por: Wang, Minghui, et al.
Publicado: (2009) -
Joint analysis of sequence data and single-nucleotide polymorphism data using pedigree information for imputation and recombination inference
por: Song, Sunah, et al.
Publicado: (2014) -
Classification of rheumatoid arthritis status with candidate gene and genome-wide single-nucleotide polymorphisms using random forests
por: Sun, Yan V, et al.
Publicado: (2007)