Cargando…
Carbohydrate-Responsive Element-Binding Protein (ChREBP) Is a Negative Regulator of ARNT/HIF-1β Gene Expression in Pancreatic Islet β-Cells
OBJECTIVE: Carbohydrate-responsive element-binding protein (ChREBP) is a transcription factor that has been shown to regulate carbohydrate metabolism in the liver and pancreatic β-cells in response to elevated glucose concentrations. Because few genes have been identified so far as bona fide ChREBP-...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797916/ https://www.ncbi.nlm.nih.gov/pubmed/19833882 http://dx.doi.org/10.2337/db08-0868 |
Sumario: | OBJECTIVE: Carbohydrate-responsive element-binding protein (ChREBP) is a transcription factor that has been shown to regulate carbohydrate metabolism in the liver and pancreatic β-cells in response to elevated glucose concentrations. Because few genes have been identified so far as bona fide ChREBP-target genes, we have performed a genome-wide analysis of the ChREBP transcriptome in pancreatic β-cells. RESEARCH DESIGN AND METHODS: Chromatin immunoprecipitation and high-density oligonucleotide tiling arrays (ChIP-chip; Agilent Technologies) using MIN6 pancreatic β-cell extracts were performed together with transcriptional and other analysis using standard techniques. RESULTS: One of the genes identified by ChIP-chip and linked to glucose sensing and insulin secretion was aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia-inducible factor-1β (HIF-1β), a transcription factor implicated in altered gene expression and pancreatic-islet dysfunction in type 2 diabetes. We first confirmed that elevated glucose concentrations decreased ARNT/HIF-1β levels in INS-1 (832/13) cells and primary mouse islets. Demonstrating a role for ChREBP in ARNT gene regulation, ChREBP silencing increased ARNT mRNA levels in INS-1 (832/13) cells, and ChREBP overexpression decreased ARNT mRNA in INS-1 (832/13) cells and primary mouse islets. We demonstrated that ChREBP and Max-like protein X (MLX) bind on the ARNT/HIF-1β promoter on the proximal region that also confers the negative glucose responsiveness. CONCLUSIONS: These results demonstrate that ChREBP acts as a novel repressor of the ARNT/HIF-1β gene and might contribute to β-cell dysfunction induced by glucotoxicity. |
---|