Cargando…

Identification of known and novel pancreas genes expressed downstream of Nkx2.2 during development

BACKGROUND: The homeodomain containing transcription factor Nkx2.2 is essential for the differentiation of pancreatic endocrine cells. Deletion of Nkx2.2 in mice leads to misspecification of islet cell types; insulin-expressing β cells and glucagon-expressing α cells are replaced by ghrelin-expressi...

Descripción completa

Detalles Bibliográficos
Autores principales: Anderson, Keith R, White, Peter, Kaestner, Klaus H, Sussel, Lori
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2799404/
https://www.ncbi.nlm.nih.gov/pubmed/20003319
http://dx.doi.org/10.1186/1471-213X-9-65
_version_ 1782175776888586240
author Anderson, Keith R
White, Peter
Kaestner, Klaus H
Sussel, Lori
author_facet Anderson, Keith R
White, Peter
Kaestner, Klaus H
Sussel, Lori
author_sort Anderson, Keith R
collection PubMed
description BACKGROUND: The homeodomain containing transcription factor Nkx2.2 is essential for the differentiation of pancreatic endocrine cells. Deletion of Nkx2.2 in mice leads to misspecification of islet cell types; insulin-expressing β cells and glucagon-expressing α cells are replaced by ghrelin-expressing cells. Additional studies have suggested that Nkx2.2 functions both as a transcriptional repressor and activator to regulate islet cell formation and function. To identify genes that are potentially regulated by Nkx2.2 during the major wave of endocrine and exocrine cell differentiation, we assessed gene expression changes that occur in the absence of Nkx2.2 at the onset of the secondary transition in the developing pancreas. RESULTS: Microarray analysis identified 80 genes that were differentially expressed in e12.5 and/or e13.5 Nkx2.2(-/- )embryos. Some of these genes encode transcription factors that have been previously identified in the pancreas, clarifying the position of Nkx2.2 within the islet transcriptional regulatory pathway. We also identified signaling factors and transmembrane proteins that function downstream of Nkx2.2, including several that have not previously been described in the pancreas. Interestingly, a number of known exocrine genes are also misexpressed in the Nkx2.2(-/- )pancreas. CONCLUSIONS: Expression profiling of Nkx2.2(-/- )mice during embryogenesis has allowed us to identify known and novel pancreatic genes that function downstream of Nkx2.2 to regulate pancreas development. Several of the newly identified signaling factors and transmembrane proteins may function to influence islet cell fate decisions. These studies have also revealed a novel function for Nkx2.2 in maintaining appropriate exocrine gene expression. Most importantly, Nkx2.2 appears to function within a complex regulatory loop with Ngn3 at a key endocrine differentiation step.
format Text
id pubmed-2799404
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-27994042009-12-30 Identification of known and novel pancreas genes expressed downstream of Nkx2.2 during development Anderson, Keith R White, Peter Kaestner, Klaus H Sussel, Lori BMC Dev Biol Research article BACKGROUND: The homeodomain containing transcription factor Nkx2.2 is essential for the differentiation of pancreatic endocrine cells. Deletion of Nkx2.2 in mice leads to misspecification of islet cell types; insulin-expressing β cells and glucagon-expressing α cells are replaced by ghrelin-expressing cells. Additional studies have suggested that Nkx2.2 functions both as a transcriptional repressor and activator to regulate islet cell formation and function. To identify genes that are potentially regulated by Nkx2.2 during the major wave of endocrine and exocrine cell differentiation, we assessed gene expression changes that occur in the absence of Nkx2.2 at the onset of the secondary transition in the developing pancreas. RESULTS: Microarray analysis identified 80 genes that were differentially expressed in e12.5 and/or e13.5 Nkx2.2(-/- )embryos. Some of these genes encode transcription factors that have been previously identified in the pancreas, clarifying the position of Nkx2.2 within the islet transcriptional regulatory pathway. We also identified signaling factors and transmembrane proteins that function downstream of Nkx2.2, including several that have not previously been described in the pancreas. Interestingly, a number of known exocrine genes are also misexpressed in the Nkx2.2(-/- )pancreas. CONCLUSIONS: Expression profiling of Nkx2.2(-/- )mice during embryogenesis has allowed us to identify known and novel pancreatic genes that function downstream of Nkx2.2 to regulate pancreas development. Several of the newly identified signaling factors and transmembrane proteins may function to influence islet cell fate decisions. These studies have also revealed a novel function for Nkx2.2 in maintaining appropriate exocrine gene expression. Most importantly, Nkx2.2 appears to function within a complex regulatory loop with Ngn3 at a key endocrine differentiation step. BioMed Central 2009-12-10 /pmc/articles/PMC2799404/ /pubmed/20003319 http://dx.doi.org/10.1186/1471-213X-9-65 Text en Copyright ©2009 Anderson et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research article
Anderson, Keith R
White, Peter
Kaestner, Klaus H
Sussel, Lori
Identification of known and novel pancreas genes expressed downstream of Nkx2.2 during development
title Identification of known and novel pancreas genes expressed downstream of Nkx2.2 during development
title_full Identification of known and novel pancreas genes expressed downstream of Nkx2.2 during development
title_fullStr Identification of known and novel pancreas genes expressed downstream of Nkx2.2 during development
title_full_unstemmed Identification of known and novel pancreas genes expressed downstream of Nkx2.2 during development
title_short Identification of known and novel pancreas genes expressed downstream of Nkx2.2 during development
title_sort identification of known and novel pancreas genes expressed downstream of nkx2.2 during development
topic Research article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2799404/
https://www.ncbi.nlm.nih.gov/pubmed/20003319
http://dx.doi.org/10.1186/1471-213X-9-65
work_keys_str_mv AT andersonkeithr identificationofknownandnovelpancreasgenesexpresseddownstreamofnkx22duringdevelopment
AT whitepeter identificationofknownandnovelpancreasgenesexpresseddownstreamofnkx22duringdevelopment
AT kaestnerklaush identificationofknownandnovelpancreasgenesexpresseddownstreamofnkx22duringdevelopment
AT sussellori identificationofknownandnovelpancreasgenesexpresseddownstreamofnkx22duringdevelopment